Skip to main content

Abstract

In this chapter we shall introduce the basic principles of the homotopy analysis method for nonlinear differential equations. In Section 2.1, we shall review the topological principle of homotopy and then discuss how this relates to the homotopy analysis method for constructing solutions to nonlinear differential equations. As with any perturbation method, we shall need a way to compute higher order corrections, and this is outlined in Section 2.2, where we discuss the higher order deformation equations. From here, we are then able to outline the general method of constructing series solutions to nonlinear differential equations and relevant initial or boundary value problems in Section 2.3. Often times when dealing with nonlinear differential equations, the question of whether solutions exist and are unique is of importance. Accordingly, in Section 2.4, we discuss the existence and uniqueness of solutions obtained via the homotopy analysis method. Throughout mathematics, there are often multiple ways to solve a given problem. In obtaining perturbation solutions to differential equations, there are multiple iterative routines one may employ. In Section 2.5, we compare the method of homotopy analysis to some other perturbation schemes, and highlight one primary benefit of the method — namely, that the homotopy analysis method solution does not require small model parameters. From here, we will be in a position to introduce more advanced methods which permit the control of convergence of solutions in Chapter 3 and advanced treatments for more complicated systems of equations in Chapter 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall\CRC Press, Boca Raton, 2003.

    Book  Google Scholar 

  2. S. J. Liao, On the proposed homotopy analysis techniques for nonlinear problems and its application, Ph.D. dissertation, Shanghai Jiao Tong University, 1992.

    Google Scholar 

  3. S. J. Liao, An explicit, totally analytic approximation of Blasius’ viscous flow problems, Int. J. Non-Linear Mech., 34 (1999) 759.

    Article  MATH  Google Scholar 

  4. S. J. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 147 (2004) 499.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Studies in Applied Mathematics, 119 (2007) 297.

    Article  MathSciNet  Google Scholar 

  6. S. J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 983.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.A. Van Gorder and K. Vajravelu, On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: A general approach, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 4078.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Li and S.J. Liao, An analytic approach to solve multiple solutions of a strongly nonlinear problem, Applied Mathematics and Computation, 169 (2005) 854.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Xu and S.J. Liao, Dual solutions of boundary layer flow over an upstream moving plate, Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 350.

    Article  MathSciNet  MATH  Google Scholar 

  10. S.J. Liao, Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method, Nonlinear Analysis: Real World Applications, 10 (2009) 2455.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.J. Liao, Series solutions of unsteady boundary-layer flows over a stretching flat plate, Studies Applied Mathematics, 117 (2006) 239.

    Article  MATH  Google Scholar 

  12. S.J. Liao, Finding multiple solutions of nonlinear problems by means of the homotopy analysis method, Journal of Hydrodynamics, Ser. B, 18 (2006) 54.

    Article  Google Scholar 

  13. S. Abbasbandy and A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numerical Algorithms, 54 (2010) 521.

    Article  MathSciNet  MATH  Google Scholar 

  14. S.J. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation, 169 (2005) 1186.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.S.H. Chowdhury, I. Hashim and O. Abdulaziz, Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 371.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Domairry and N. Nadim, Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation, International Communications in Heat and Mass Transfer, 35 (2008) 93.

    Article  Google Scholar 

  17. S. Liang and D. J. Jeffrey, Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 4057.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. T. Akyildiz, D. A. Siginer, K. Vajravelu and R. A. Van Gorder, Analytical and numerical results for the Swift-Hohenberg equation, Applied Mathematics and Computation, 216 (2010) 221.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.B. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15 (1977) 319.

    Article  Google Scholar 

  20. G.T. Dee and W. van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett., 60 (1988) 2641.

    Article  Google Scholar 

  21. W. Zimmerman, Propagating fronts near a Lifschitz point, Phys. Rev. Lett., 66 (1991) 1546.

    Article  Google Scholar 

  22. G. Caginalp and P.C. Fife, Higher order phase field models and detailed anisotropy, Phys. Rev. B, 34 (1986) 4940.

    Article  MathSciNet  Google Scholar 

  23. R.A. Gardner and C.K.R.T. Jones, Traveling waves of a perturbed diffusion equation arising in a phase field model, Indiana Univ. Math. J., 38 (1989) 1197.

    MathSciNet  Google Scholar 

  24. J. Chaparova, L.A. Peletier and S. Tersian, Existence and nonexistence of nontrivial solutions of semilinear sixth order ordinary differential equations, Applied Mathematics Letters, 17 (2004) 1207.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Chaparova, L.A. Peletier and S. Tersian, Existence and nonexistence of nontrivial solutions of semilinear fourth-and sixth-order ordinary differential equations, Adv. Diff. Eqns., 8 (2003) 1237.

    MathSciNet  MATH  Google Scholar 

  26. S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics of the Swift-Hohenberg equation, SIAM Journal on Applied Dynamical Systems, 4 (2005) 1.

    Article  MathSciNet  MATH  Google Scholar 

  27. C.I. Christov and J. Pontes, Numerical scheme for Swift-Hohenberg equation with strict implementation of Lyapunov functional, Mathematical and Computer Modelling, 35 (2002) 87.

    Article  MathSciNet  MATH  Google Scholar 

  28. M.O. Caceres, About the stochastic multiplicative Swift-Hohenberg equation: The eigenvalue problem, Chaos, Solitons & Fractals, 6 (1995) 43.

    Article  MathSciNet  MATH  Google Scholar 

  29. L.A. Peletier and V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D, 194 (2004) 95.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Atkinson, An Introduction to Numerical Analysis, John Wiley & Sons, Inc, 1989.

    Google Scholar 

  31. E.B. Saff and R.S. Varga (Eds.), Padé and Rational Approximation (Tampa, 1976), Acad. Press, 1977.

    Google Scholar 

  32. R. A. Van Gorder and K. Vajravelu, Convective heat transfer in a conducting fluid over a permeable stretching surface with suction and internal heat generation / absorption, Applied Mathematics and Computation, 217 (2011) 5810.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. A. Attia, On the effectiveness of porosity on stagnation point flow towards a stretching surface with heat generation, Computational Materials Science, 38 (2007) 741.

    Article  Google Scholar 

  34. A. R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transfer, 46 (2003) 4989.

    Article  MATH  Google Scholar 

  35. R. Nazar, M. Amin, D. Philip and I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech., 39 (2004) 1227.

    Article  MATH  Google Scholar 

  36. L. J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys., 21 (1970) 645.

    Article  Google Scholar 

  37. U. Ascher, R. Mattheij and R. Russell, Numerical solution of boundary value problems or ordinary differential equations, SIAM Classics in Applied Mathematics, 1995.

    Google Scholar 

  38. U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

    Book  MATH  Google Scholar 

  39. R. A. Van Gorder and K. Vajravelu, Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet, Mechanics Research Communications, 37 (2010) 113.

    Article  MathSciNet  Google Scholar 

  40. H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1960.

    Google Scholar 

  41. K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech J., 326 (1911) 321.

    Google Scholar 

  42. L. Howarth, On the solution of the laminar boundary layer equations, Proc. Roy. Soc. London A, 164 (1938) 547.

    Article  MATH  Google Scholar 

  43. K. Gersten, H.D. Papenfuss and J.F. Gross, Influence of the Prandtl number on secondorder heat transfer due to surface curvature at a three dimensional stagnation point, Int. J. Heat Mass Transfer, 21 (1978) 275.

    Article  Google Scholar 

  44. S.J. Liao, A uniformly valid analytic solution of two-dimensional viscous flow over a semiinfinite flat plate, J. Fluid Mech., 385 (1999) 101.

    Article  MathSciNet  MATH  Google Scholar 

  45. P.D. Weidman and V. Putkaradze, Axisymmetric stagnation flow obliquely impinging on a circular cylinder, Eur. J. Mech. B/Fluids, 22 (2003) 123.

    Article  Google Scholar 

  46. J.T. Stuart, The viscous flow near a stagnation point when the external flow has uniform vorticity, J. Aerospace Sci., 26 (1959) 124.

    Article  MATH  Google Scholar 

  47. K.J. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jpn., 46 (1979) 310.

    Article  Google Scholar 

  48. N. Takemitsu and Y. Matunobu, Unsteady stagnation-point flow impinging obliquely on an oscillating flat plate, J. Phys. Soc. Jpn., 47 (1979) 1347.

    Article  MathSciNet  Google Scholar 

  49. J.M. Dorrepaal, An exact solution of the Navier-Stokes equation which describes nonorthogonal stagnation-point flow in two dimensions, J. Fluid Mech., 163 (1986) 141.

    Article  MathSciNet  MATH  Google Scholar 

  50. J.M. Dorrepaal, Is two-dimensional oblique stagnation-point flow unique, Canad. Appl. Math. Quart., 8 (2000) 61.

    Article  MathSciNet  MATH  Google Scholar 

  51. F. Labropulu, J.M. Dorrepaal and O.P. Chandna, Oblique flow impinging on a wall with suction or blowing, Acta Mech., 115 (1996) 15.

    Article  MATH  Google Scholar 

  52. B.S. Tilley and P.D. Weidman, Oblique two-fluid stagnation-point flow, Eur. J. Mech. B/Fluids, 17 (1998) 205.

    Article  MathSciNet  MATH  Google Scholar 

  53. J.N. Kapur and R.C. Srivastava, Similar solutions of the boundary layer equations for power law fluids, Z. Angew. Math. Phys., 14 (1963) 383.

    Article  MathSciNet  MATH  Google Scholar 

  54. M.K. Maiti, Axially-symmetric stagnation point flow of power law fluids, Z. Angew. Math. Phys., 16 (1965) 594.

    Article  MathSciNet  Google Scholar 

  55. S.R. Koneru and R. Manohar, Stagnation point flows of non-newtonian power law fluids, Z. Angew. Math. Phys., 19 (1968) 84.

    Article  MATH  Google Scholar 

  56. Y.G. Sapunkov, Similarity solutions of boundary layer of non-Newtonian fluids in magnetohydrodynamics, Mech. Zidkosti I Gaza, 6 (1967) 77 (in Russian).

    Google Scholar 

  57. D.S. Djukic, Hiemenz magnetic flow of power-law fluids, Trans. ASME J. Appl. Mech., 41 (1974) 822.

    Article  Google Scholar 

  58. T.R. Mahapatra and A.S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass Transfer, 38 (2002) 517.

    Article  Google Scholar 

  59. R. Nazar, N. Amin, D. Filip and I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech., 39 (2004) 1227.

    Article  MATH  Google Scholar 

  60. Y.Y. Lok, N. Amin and I. Pop, Comments on: Steady two-dimensional oblique stagnationpoint flow towards a stretching surface, Fluid Dynamics Research, 39 (2007) 505.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Reza and A.S. Gupta, Steady two-dimensional oblique stagnation-point flow towards a stretching surface, Fluid Dyn. Res., 37 (2005) 334.

    Article  MathSciNet  MATH  Google Scholar 

  62. T.R. Mahapatra, S. Dholey and A.S. Gupta, Heat Transfer in oblique stagnation-point flow of an incompressible viscous fluid towards a stretching surface, Heat and Mass Transfer, 43 (2007) 767.

    Article  Google Scholar 

  63. J. Paullet and P. Weidman, Analysis of stagnation point flow toward a stretching sheet, Int. J. Non-Linear Mech., 42 (2007) 1084.

    Article  MATH  Google Scholar 

  64. Y.Y. Lok, N. Amin and I. Pop, Non-orthogonal stagnation point flow towards a stretching sheet, Int. J. Non-Linear Mech., 41 (2006) 622.

    Article  Google Scholar 

  65. Y.Y. Lok, N. Amin and I. Pop, Mixed convection flow near a non-orthogonal stagnation point towards a stretching vertical plate, Int. J. Heat Mass Transfer, 50 (2007) 4855.

    Article  MATH  Google Scholar 

  66. Y.Y. Lok, N. Amin, D. Campean and I. Pop, Steady mixed connection flow of a micropolar fluid near the stagnation point of a vertical surface, Int. J. Numer. Method. Heat Fluid Flow, 15 (2005) 654.

    Article  Google Scholar 

  67. Y.Y. Lok, N. Amin and I. Pop, Mixed convection near a non-orthogonal stagnation point flow on a vertical plate with uniform surface heat flux, Acta Mech., 186 (2006) 99.

    Article  MATH  Google Scholar 

  68. N. Ramachandran, T.S. Chen and B.F. Armaly, Mixed convection in stagnation flows adjacent to vertical surfaces, ASME J. Heat Transfer, 110 (1988) 373.

    Article  Google Scholar 

  69. A. Ishak, K. Jafar, R. Nazar and I. Pop, MHD stagnation point flow towards a stretching sheet, Physica A, 388 (2009) 3377.

    Article  Google Scholar 

  70. T.R. Mahapatra and A.S. Gupta, Magnetohydrodynamic stagnation-point flow towards a stretching sheet, Acta Mech., 152 (2001) 191.

    Article  MATH  Google Scholar 

  71. T.R. Mahapatra, S.K. Nandy and A.S. Gupta, Magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface, Int. J. Non-Linear Mech., 44 (2009) 124.

    Article  MATH  Google Scholar 

  72. Z. Ziabakhsh, G. Domairry and H.R. Ghazizadeh, Analytical solution of the stagnationpoint flow in a porous medium by using the homotopy analysis method, Journal of the Taiwan Institute of Chemical Engineers, 40 (2009) 91.

    Article  Google Scholar 

  73. Q. Wu, S. Weinbaum and Y. Andreopoulos, Stagnation-point flow in a porous medium, Chem. Eng. Sci., 60 (2005) 123.

    Article  Google Scholar 

  74. S.A. Kechil and I. Hashim, Approximate analytical solution for MHD stagnation-point flow in porous media, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 1346.

    Article  Google Scholar 

  75. R.S. Rivlin and J.L. Ericksen, Stress deformation relations for isotropic materials, J. Rat. Mech. Anal., 4 (1955) 323.

    MathSciNet  MATH  Google Scholar 

  76. J.E. Dunn and K.R. Rajagopal, Fluids of differential type: Critical review and thermodynamic analysis, Int. J. Engng. Sci., 33 (1995) 689.

    Article  MathSciNet  MATH  Google Scholar 

  77. K.R. Rajagopal, A.S. Gupta and T.A. Na, A note on the Faulkner-Skan flows of a non-Newtonian fluid, Int. J. Non-Linear Mech., 18 (1983) 313.

    Article  MathSciNet  MATH  Google Scholar 

  78. K. Vajravelu and D. Rollins, Heat transfer in a viscoelastic fluid over a stretching sheet, J. Math. Anal. Appl., 158 (1991) 241.

    Article  MathSciNet  MATH  Google Scholar 

  79. M.S. Sarma and B.N. Rao, Heat transfer in a viscoelastic fluid over a stretching sheet, J. Math. Anal. Appl., 222 (1998) 268.

    Article  MathSciNet  MATH  Google Scholar 

  80. W.C. Troy, E.A. Overman, G.B. Ermentrout and J.P. Keener, Uniqueness of flow of a second order fluid past a stretching sheet, Quart. Appl. Math., 44 (1987) 753.

    MathSciNet  MATH  Google Scholar 

  81. W.D. Chang, The nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet, Quart. Appl. Math., 47 (1989) 365.

    MathSciNet  MATH  Google Scholar 

  82. P.S. Lawrence and B.N. Rao, Reinvestigation of the nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet, Quart. Appl. Math., 51 (1993) 401.

    MathSciNet  MATH  Google Scholar 

  83. W.D. Chang, N.D. Kazarinoff and C. Lu, A new family of explicit solutions for the similarity equations modelling flow of a non-Newtonian fluid over a stretching sheet, Arch. Rat. Mech. Anal., 113 (1991) 191.

    Article  MathSciNet  MATH  Google Scholar 

  84. K. Vajravelu and T. Roper, Flow and heat transfer in a second grade fluid over a stretching sheet, Int. J. Non-Linear Mech., 34 (1999) 1031.

    Article  Google Scholar 

  85. K. Vajravelu and D. Rollins, Hydromagnetic flow of a second grade fluid over a stretching sheet, Applied Mathematics and Computation, 148 (2004) 783.

    Article  MathSciNet  MATH  Google Scholar 

  86. A.D. Barinberg, A.B. Kapusta and B.V. Chekin, Magnitnaya Gidrodinamika (English translation), 11 (1975) 111.

    Google Scholar 

  87. T. Hayat, Z. Abbas and I. Pop, Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid, Int. J. Heat Mass Transfer, 51 (2008) 3200.

    Article  MATH  Google Scholar 

  88. M. S. Abel and N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Applied Mathematical Modelling, 32 (2008) 1965.

    Article  MathSciNet  MATH  Google Scholar 

  89. M. Ayub, H. Zaman, M. Sajid and T. Hayat, Analytical solution of stagnation-point flow of a viscoelastic fluid towards a stretching surface, Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 1822.

    Article  MathSciNet  MATH  Google Scholar 

  90. T. Hayat, Z. Abbas and M. Sajid, MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface, Chaos, Solitons & Fractals, 39 (2009) 840.

    Article  MATH  Google Scholar 

  91. C.-H. Chen, Magneto-hydrodynamic mixed convection of a power-law fluid past a stretching surface in the presence of thermal radiation and internal heat generation/absorption, Int. J. Non-Linear Mech., 44 (2009) 596.

    Article  MATH  Google Scholar 

  92. J.C. Misra and G.C. Shit, Biomagnetic viscoelastic fluid flow over a stretching sheet, Applied Mathematics and Computation, 210 (2009) 350.

    Article  MathSciNet  MATH  Google Scholar 

  93. K.V. Prasad, D. Pal, V. Umesh and N.S. P. Rao, The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 331.

    Article  MATH  Google Scholar 

  94. A. Chakrabarti and A.S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Quart. Appl. Math., 37 (1979) 73.

    MATH  Google Scholar 

  95. K. Vajravelu and D. Rollins, Heat transfer in an electrically conducting fluid over a stretching sheet, Int. J. Non-Linear Mech., 27 (1992) 265.

    Article  MATH  Google Scholar 

  96. H.I. Andersson, An exact solution of the Navier-Stokes equations for magnetohydrodynamic flow, Acta Mech., 113 (1995) 241.

    Article  MathSciNet  MATH  Google Scholar 

  97. I. Pop and T.Y. Na, A note on MHD flow over a stretching permeable surface, Mech. Res. Commun., 25 (1998) 263.

    Article  MathSciNet  MATH  Google Scholar 

  98. M.S. Abel and M.M. Nandeppanavar, Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 2120.

    Article  MathSciNet  MATH  Google Scholar 

  99. H.S. Takhar, A.J. Chamkha and G. Nath, Unsteady three-dimensional MHD boundarylayer flow due to the impulsive motion of a stretching surface, Acta Mech., 146 (2001) 59.

    Article  MATH  Google Scholar 

  100. P.D. McCormak and L.J. Crane, Physical Fluid Dynamics, Academic Press, New York, 1973.

    Google Scholar 

  101. P.S. Gupta and A.S. Gupta, Heat and mass transfer on a stretching sheet with suction and blowing, J. Chem. Eng., 55 (1977) 744.

    Google Scholar 

  102. P. Carragher and L.J. Crane, Heat transfer on a continuous stretching sheet, J. Appl. Math. Mech. (ZAMM), 62 (1982) 564.

    Article  Google Scholar 

  103. B.K. Dutta, Heat transfer from a stretching sheet with uniform suction and blowing, Acta Mech., 78 (1989) 255.

    Article  MATH  Google Scholar 

  104. K. Vajravelu and A. Hadjicolaou, Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. Sci., 35 (1997) 1237.

    Article  MATH  Google Scholar 

  105. E. Magyari and B. Keller, Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J. Phys. D: Appl. Phys., 32 (1999) 577.

    Article  Google Scholar 

  106. E. Magyari and B. Keller, Exact solutions for self-similar boundary-layer flows induced by permeable stretching surfaces, Eur. J. Mech. B/Fluids, 19 (2000) 109.

    Article  MathSciNet  MATH  Google Scholar 

  107. S.J. Liao and I. Pop, Explicit analytic solution for similarity boundary layer equations, Int. J. Heat Mass Transfer, 47 (2004) 75.

    Article  Google Scholar 

  108. K.R. Rajagopal, T.Y. Na and A.S. Gupta, Flow of a visco-elastic fluid over a stretching sheet, Rheol. Acta, 23 (1984) 213.

    Article  Google Scholar 

  109. K. Vajravelu and D. Rollins, Heat transfer in a viscoelastic fluid over a stretching sheet, J. Math. Anal. Appl., 158 (1991) 241.

    Article  MathSciNet  MATH  Google Scholar 

  110. J.B. McLeod and K.R. Rajagopal, On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary, Arch. Ration. Mech. Anal., 98 (1987) 385.

    Article  MathSciNet  MATH  Google Scholar 

  111. W.C. Troy, E.A. Overman II, G.B. Ermen-Trout and J.P. Keener, Uniqueness of flow of a second-order fluid past a stretching sheet, Quart. Appl. Math., 44 (1987) 753.

    MathSciNet  MATH  Google Scholar 

  112. K. Vajravelu and J.R. Cannon, Fluid flow over a nonlinear stretching sheet, Applied Mathematics and Computation, 181 (2006) 609.

    Article  MathSciNet  MATH  Google Scholar 

  113. F. T. Akyildiz, D. A. Siginer, K. Vajravelu, J. R. Cannon and R. A. Van Gorder, Similarity solutions of the boundary layer equation for a nonlinearly stretching sheet, Mathematical Methods in the Applied Sciences, 33 (2010) 601.

    MathSciNet  MATH  Google Scholar 

  114. R. A. Van Gorder and K. Vajravelu, A general class of coupled nonlinear differential equations arising in self-similar solutions of convective heat transfer problems, Applied Mathematics and Computation, 217 (2010) 460.

    Article  MathSciNet  MATH  Google Scholar 

  115. H. Xu, S.J. Liao and G.X. Wu, A family of new solutions on the wall jet, Eur. J. Mech. B/Fluid, 27 (2008) 322.

    Article  MathSciNet  MATH  Google Scholar 

  116. S.J. Liao, A new branch of boundary layer flows over a permeable stretching plate, Int. J. Non-linear Mech., 42 (2007) 819.

    Article  MATH  Google Scholar 

  117. S.J. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat Mass Transfer, 48 (2005) 2529.

    Article  MATH  Google Scholar 

  118. S. Abbasbandy, E. Magyari and E. Shivanian, The homotopy analysis method for multiple solutions of nonlinear boundary value problems, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 3530.

    Article  MathSciNet  MATH  Google Scholar 

  119. R.A. Van Gorder and K. Vajravelu, Multiple solutions for hydromagnetic flow of a second grade fluid over a stretching or shrinking sheet, Quart. Appl. Math., 69 (2011) 405.

    MathSciNet  MATH  Google Scholar 

  120. R. A. Van Gorder, High-order nonlinear boundary value problems admitting multiple exact solutions with application to the fluid flow over a sheet, Applied Mathematics and Computation, 216 (2010) 2177.

    Article  MathSciNet  MATH  Google Scholar 

  121. T.C. Chiam, Stagnation-point flow towards a stretching plate, J. Phys. Soc. Jpn., 63 (1994) 2443.

    Article  Google Scholar 

  122. T.R. Mahapatra and A.S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass Transfer, 38 (2002) 517.

    Article  Google Scholar 

  123. M. Reza and A.S. Gupta, Steady two-dimensional oblique stagnation-point flow towards a stretching surface, Fluid Dyn. Res., 27 (2005) 334.

    Article  MathSciNet  Google Scholar 

  124. J.T. Stuart, The viscous flow near a stagnation point when the external flow has uniform vorticity, J. Aerosp. Sci., 26 (1959) 124.

    Article  MATH  Google Scholar 

  125. K.J. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jpn., 46 (1979) 310.

    Article  Google Scholar 

  126. J.M. Dorrepaal, An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions, J. Fluid Mech., 163 (1986) 141.

    Article  MathSciNet  MATH  Google Scholar 

  127. F. Labropulu, J.M. Dorrepaal and O.P. Chandna, Oblique flow impinging on a wall with suction or blowing, Acta Mech., 115 (1996) 15.

    Article  MATH  Google Scholar 

  128. M. Amaouche and D. Boukari, Influence of thermal convection on nonorthogonal stagnation point flow, Int. J. Thermal Sci., 42 (2003) 303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vajravelu, K., van Gorder, R.A. (2012). Principles of Homotopy Analysis. In: Nonlinear Flow Phenomena and Homotopy Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32102-3_2

Download citation

Publish with us

Policies and ethics