Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 685 Accesses

Abstract

All chemicals were supplied by Aldrich, with the exception of reagent grade acetone (supplied by Fluka), Zeoprep silica, Merck standardised alumina 90, Merck silica 9,385 (partical size 0.040–0.063 mm), and 95 % HPLC grade pentane (supplied by Romil). All chemicals were used without further purification except diethyl ether, toluene, and THF, which were dried in Grubbs solvent press and stored in Strauss flasks under a nitrogen atmosphere. All benzaldehydes (supplied by Aldrich) were checked by NMR for the presence of carboxylic acids, but no trace of acid was found and so the benzaldehydes were used without further purification. Phosphonium salts were dried in a vacuum dessicator over P2O5 and, together with KHMDS and NaHMDS, were stored in an mBraun glove box under an atmosphere of argon. Oxalyl chloride was stored under an atmosphere of nitrogen in a Young’s flask, and dispensed by nitrogen-flushed syringe. 1,2-O-isopropylidene-3-O-methyl-α-D-xylopentodialdofuranose-(1,4) was dissolved placed in a Schlenk flask under argon gas, and dissolved in dry THF to give a 0.5 mol L−1 solution. This solution was stored in the Schlenk flask under nitrogen at −18 °C in a freezer. 2-methylbenzaldehyde (o-tolualdehyde) was stored under nitrogen in a sealed Fluka® vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Melting point is 79–81 °C.

  2. 2.

    It was ensured that the aldehydes to be used were free of carboxylic acid by NMR analysis. Diagnostic singlets were observed at approximately 10.4 ppm for the 2-halobenzaldehydes, and at 10 ppm for benzaldehyde itself. No signals pertaining to carboxylic acid were observed.

  3. 3.

    An alumina plug was used here rather than a silica plug, as was done in Ref. [22], as it has previously been demonstrated by work in our group that some alkenes are more prone to isomerisation in contact with silica than with alumina (see Ref. [23]).

  4. 4.

    Characterisation details for E-2-iodostilbene is given above in this section.

  5. 5.

    Characterisation data for for Z-2-iodostilbene is given above in this section.

  6. 6.

    It was ensured that the 2-methoxybenzaldehyde used was free of 2-methoxybenzoic acid by dissolving the compound in dichloromethane, and washing the dichloromethane solution with two aliquots of saturated aqueous sodium hydrogencarbonate solution. The dichloromethane phase was then dried using MgSO4, and the drying agent was removed by filtration. Evaporation of the dichloromethane first on rotary evaporator and then on the vacuum line gave the 2-methoxybenzaldehyde.

  7. 7.

    Characterisation details for Z-2,2′-diiodostilbene are given in this section.

  8. 8.

    Acetonylmethyldiphenylphosphorane was found to be insoluble in THF below ca. −50 °C. Addition of 2-chlorobenzaldehyde to a biphasic salt-free mixture of ylide and THF at −78 °C followed by addition of HCl at low temperature resulted in no reaction.

  9. 9.

    For characterisation details for the Z-isomer of this compound, see Sect. 4.6.1.

  10. 10.

    CCDC-883627 contain the X-ray crystallographic data for this compound. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

  11. 11.

    See Sect. 4.2.5, for characterisation details of this compound.

  12. 12.

    Characterisation details for P-(isobutyl)-P-phenyldibenzophospholium bromide are given in Sect. 4.2.5.

  13. 13.

    See Sect. 4.9 of this thesis for details of the characterisation of this compound.

  14. 14.

    Characterisation data for this compound is given in Sect. 4.8.

  15. 15.

    Characterisation data for this compound is given in Sect. 4.4.

References

  1. Shriver DF, Drezdzon MA (1986) The manipulation of air sensitive compounds, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  2. Trippett S, Walker DM (1926) J Chem Soc 1266. Only MP (242-244 °C) and elemental analysis data are given

    Google Scholar 

  3. Muller G, Abicht HP, Waldkircher M, Lachmann J, Lutz M, Winkler M (2001) J Organomet Chem 622:121 (Characterisation of phosphonium iodide salt)

    Google Scholar 

  4. Cvengros J, Toma S, Marque S, Loupy A (2004) Can J Chem 82:1365

    Article  CAS  Google Scholar 

  5. Fleming I, Loreto MA, Wallace IHM (1986) J Chem Soc Perkin Trans 1:349

    Article  Google Scholar 

  6. Shieh R.-L, Lin R.-L, Hwang J.-J, Jwo J.-J (1998) J Chin Chem Soc (Taipei, Taiwan) 45:517 (Characterisation of phosphonium chloride salt)

    Google Scholar 

  7. Mitsumori T, Koga N, Iwamura H (1994) J Phys Org Chem 7:43

    Article  CAS  Google Scholar 

  8. Staab HA, Gunthert P (1977) Chem Ber 110:619. Only MP data (265–266 °C) and elemental analysis data (Calculated C 53.7 %, H 3.79 %, P 5.54 %) are quoted

    Google Scholar 

  9. Cresp TM, Giles RGF, Sargent MV, Cresp TM, Giles RGF, Sargent MV, Brown C, Smith DO’N (1974) J Chem Soc, Perkin Trans 1:2435. Only MP (242–244 °C) and elemental analysis data are given

    Google Scholar 

  10. Yamataka H, Nagareda K, Ando K, Hanafusa T (1992) J Org Chem 57:2867

    Article  Google Scholar 

  11. Uziel J, Riegal N, Aka B, Figuère P, Jugé S (1997) Tetrahedron Lett 38:3405

    Article  CAS  Google Scholar 

  12. Moghaddam FM, Farimani MM (2010) Tetrahedron Lett 51:540

    Article  CAS  Google Scholar 

  13. Based on method presented in Miyano M, Stealey MA (1975) J Org Chem 40:2840

    Google Scholar 

  14. Bell TW, Sondheimer F (1981) J Org Chem 46:217

    Article  CAS  Google Scholar 

  15. Palaček J, Kvíčala J, Paleta O (2002) J Fluorine Chem 113:177

    Article  Google Scholar 

  16. Dabkowski W, Ozarek A, Olejniczak S, Cypryk M, Chojnowski J, Michalski J (2009) Chem Eur J 15:1747

    Article  CAS  Google Scholar 

  17. Gannett PM, Nagel DL, Reilly PJ, Lawson T, Sharpe J, Toth B (1064) J Org Chem 1988:53

    Google Scholar 

  18. Nesmeyanov NA, Rebrova OA, Mikul’shina VV, Petrovsky PV, Robas VI, Reutov OA (1976) J Organomet Chem 110:49

    Google Scholar 

  19. Cornforth J, Cornforth RH, Gray R (1982) J Chem Soc, Perkin Trans 1:2289

    Google Scholar 

  20. Stephan M (MS), Sterk D, Modec B, Mohar B (2007) J Org Chem 72:8010

    Google Scholar 

  21. Vedejs E, Marth CF, Ruggeri R (1988) Iodide salt characterisation. J Am Chem Soc 110:3940

    Google Scholar 

  22. Vedejs E, Marth CF, Ruggeri R (1988) J Am Chem Soc 110:3940

    Article  CAS  Google Scholar 

  23. Dunne EC, Coyne EJ, Crowley PB, Gilheany DG (2002) Tetrahedron Lett 43:2449

    Article  CAS  Google Scholar 

  24. Yeo Q, Kinney EP, Zheng C (2004) Org Lett 6:2997

    Article  Google Scholar 

  25. Li J, Hua R, Liu T (2010) J Org Chem 75:2966

    Article  CAS  Google Scholar 

  26. Peng Z-Y, Ma F-F, Zhu L-V, Xie X-M, Zhang Z (2009) J Org Chem 74:6855

    Article  CAS  Google Scholar 

  27. Petrova J, Momchilova S, Kirilov M (1985) Phosphorus Sulfur 24:243 (Z isomer only)

    Google Scholar 

  28. Kabalka GW, Li NS, Tejedor D, Malladi RR, Trotman S (1999) J Org Chem 64:3157

    Article  CAS  Google Scholar 

  29. Dong D-J, Li HH, Tian SK (2010) J Am Chem Soc 132:5018

    Article  CAS  Google Scholar 

  30. de Meijere A, Song ZZ, Lansky A, Hyuda S, Rauch K, Noltemeyer M, Koenig B, Knieriem B (1998) Eur J Org Chem 2289

    Google Scholar 

  31. Kupchen SM, Wormser HC (1965) J Org Chem 30:3792

    Article  Google Scholar 

  32. Arela RK, Leadbeater NE (2005) J Org Chem 70:1786

    Article  Google Scholar 

  33. Cella R, Stefana HA (2006) Tetrahedron 62:5656

    Article  CAS  Google Scholar 

  34. Wyatt P, Warren S, McPartlin M, Woodruffe T (2001) J Chem Soc, Perkin Trans 1:279

    Google Scholar 

  35. Engman L (1984) J Org Chem 49:3559

    Article  CAS  Google Scholar 

  36. Wallace TW, Wardell I, Li KD, Leeming P, Redhouse AD, Challand SR (1995) J Chem Soc, Perkin Trans 1:2293

    Google Scholar 

  37. Terfort A, Brunner H (1996) J Chem Soc, Perkin Trans 1:1467

    Google Scholar 

  38. Rauniyar V, Zhai H, Hall DG (2008) J Am Chem Soc 130:8481 (E-isomer only)

    Google Scholar 

  39. Bellinger GF, Campbell WE, Giles RGF (1982) J Chem Soc Perkin Trans 1:2819 (Z-isomer only)

    Google Scholar 

  40. Mintas M, Jakopcic K, Klasnic L (1977) Z Naturforsch B 32b:181

    Google Scholar 

  41. Kim IS, Dong GR, Jung YH (2007) J Org Chem 72:5424

    Article  CAS  Google Scholar 

  42. Park CP, Dong-Pyo K (2010) J Am Chem Soc 132:10102

    Article  CAS  Google Scholar 

  43. Ueda S, Okada T, Nagasawa H (2010) Chem Commun 46:2462

    Article  CAS  Google Scholar 

  44. Wu Y, Zhao J, Chen J, Pan C, Li L, Zhang H (2009) Org Lett 11:597

    Article  CAS  Google Scholar 

  45. Ando K (1999) J Org Chem 64:8406

    Article  CAS  Google Scholar 

  46. Jia C, Lu W, Oyamada J, Kitamura T, Matsuda K, Irie M, Fujiwara Y (2000) J Am Chem Soc 122:7252

    Google Scholar 

  47. Chinatareddy VR, Ellern A, Verkade JG (2010) J Org Chem 75:7166

    Article  Google Scholar 

  48. Ruan J, Li X, Saidi O, Xiao J (2008) J Am Chem Soc 130:2424

    Article  CAS  Google Scholar 

  49. Ohe K, Takahashi H, Uemura S, Sugita N (1987) J Org Chem 52:4859

    Article  CAS  Google Scholar 

  50. Blakemore PR, Ho DKH, Mieke Nap W (2005) Org Biomol Chem 3:1365

    Article  CAS  Google Scholar 

  51. Minin PL, Walton JC (2004) Org Biomol Chem 2:2471

    Article  CAS  Google Scholar 

  52. Poeylaut-Palena AA, Testero SA, Mata EG (2008) J Org Chem 73:2024

    Article  CAS  Google Scholar 

  53. Mutter R, Campbell IB, Martin de la Nava EM, Merritt AT, Wills M (2001) J Org Chem 66:3284

    Google Scholar 

  54. Bull SD, Davies SG, Delgado-Ballester S, Kelly PM, Kotchie LJ, Gianotti M, Laderas M, Smith AD (2001) J Chem Soc, Perkin Trans 1:3112 (E-isomer only)

    Google Scholar 

  55. Bellassoued M, Majidi A (1993) J Org Chem 58:2517

    Article  CAS  Google Scholar 

  56. Yamamoto K, Watanabe M, Ideta K, Mataka S, Thiemann T (2005) Z Naturforsch 60b:1299 (E-isomer only)

    Google Scholar 

  57. Ballerini E, Minuti L, Piermatti, O (2010) J Org Chem 75:4251 (E-isomer only)

    Google Scholar 

  58. Vedejs E, Fleck T, Hara S (1987) J Org Chem 52:4637

    Google Scholar 

  59. Vedejs E, Fleck T (1989) J Am Chem Soc 111:5861

    Google Scholar 

  60. Davioud-Charvet E, McLeish MJ, Veine DM, Giegel D, Arscott LD, Andricopulo AD, Becker K, Mueller S, Schirmer RH, Williams Jr CH, Kenyon GL (2003) Biochemistry 42:13319 (E-isomer only)

    Google Scholar 

  61. Lin YM, Li Z, Casarotto V, Ehrmantraut J, Nguyen AN (2007) Tetrahedron Lett 48:5531 (E-isomer only)

    Google Scholar 

  62. Following procedure from: Paterson I, Gardner NM, Guzmán E, Wright AE (2009) Bioorg Med Chem 17:2282

    Google Scholar 

  63. Jiao L, Yuan C, Yu Z-X (2008) J Am Chem Soc 130:4421

    Article  CAS  Google Scholar 

  64. Touchard FP (2004) Procedure from. Tetrahedron Lett 45:5519

    Google Scholar 

  65. Still WC, Gennari C (1983) Tetrahedron Lett 24:4405

    Article  CAS  Google Scholar 

  66. Yamamoto K, Watanabe M, Ideta K, Mataka S, Thiemann T (2005) Z Naturforsch B 60:1299 (E-isomer only)

    Google Scholar 

  67. Ram RN, Manoj TP (2008) J Org Chem 73:5633

    Article  CAS  Google Scholar 

  68. Henichart J-P, Houssin R, Bernier J-L (1986) J Het Chem 23:1531

    Article  CAS  Google Scholar 

  69. Tanaka K, Takeaki S (2005) Org Lett 7:3561

    Article  CAS  Google Scholar 

  70. House OH, Giese RW, Kronberger K, Kaplan JP, Simeone JF (1970) J Am Chem Soc 92:2800

    Article  CAS  Google Scholar 

  71. Blake AJ, Harding M, Sharp JT (1994) J Chem Soc, Perkin Trans 1:3149 (E-isomer only)

    Google Scholar 

  72. Colberg JC, Rane A, Vaquer J, Soderquist JA (1993) J Am Chem Soc 115:6065

    Article  CAS  Google Scholar 

  73. Rim C, Son DY (2003) Org Lett 5:2443

    Article  Google Scholar 

  74. Akgun E, Glinski MB, Dhawan KL, Durst T (1981) J Org Chem 46:2730

    Article  Google Scholar 

  75. Padwa A, Rieker WF, Rosenthal RJ (1985) J Am Chem Soc 107:1710

    Article  CAS  Google Scholar 

  76. Maryanoff BE, Reitz AB, Mutter MS, Inners RR, Almond HR Jr, Whittle RR, Olofson RA (1986) J Am Chem Soc 108:7664

    Article  CAS  Google Scholar 

  77. Huang C, Tang X, Fu H, Jiang Y, Zhao Y (2006) J Org Chem 71:5020

    Article  CAS  Google Scholar 

  78. Han L-B, Kambe N, Ogiwa A, Ryu I, Sonada N (1993) Organometallics 12:473

    Article  CAS  Google Scholar 

  79. Afarinkia K, Binch HM, Modi C (1998) Tetrahedron Lett 39:7419

    Article  CAS  Google Scholar 

  80. Gan Y, Spencer TA (2006) J Org Chem 71:5870

    Article  CAS  Google Scholar 

  81. Gurjar MK, Khaladkar TP, Borhade RG, Murugan A (2003) Tetrahedron Lett 44:5183

    Google Scholar 

  82. Krueger EB, Hopkins TP, Keaney MT, Walter MA, Boldi AM (2002) J Comb Chem 4:229

    Article  CAS  Google Scholar 

  83. Tronchet JMJ, Gentile B (1979) Helv Chim Acta 62:2091

    Article  CAS  Google Scholar 

  84. Baati R, Mioskowski C, Baram D, Karche R, Falck JR (2008) Org Lett 8:2949

    Article  Google Scholar 

  85. Vikic-Topic D, Meic Z (1986) J Mol Struct 142:371

    Article  CAS  Google Scholar 

  86. Coyne EJ (1997) Arynes, ylides and chiral epoxides from substituted stilbenes. Ph.D. Thesis, UCD, Belfield, Dublin 4, pp 222–223

    Google Scholar 

  87. Ramnial T, Taylor SA, Bender ML, Gorodetsky B, Lee PTK, Dickie DA, McCollum BM, Pye CC, Walsby CJ, Clyburne JAC (2008) J Org Chem 73:801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Byrne .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Byrne, P.A. (2012). Experimental. In: Investigation of Reactions Involving Pentacoordinate Intermediates. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32045-3_4

Download citation

Publish with us

Policies and ethics