Skip to main content

Perceptual Control of Environmental Sound Synthesis

  • Conference paper
Speech, Sound and Music Processing: Embracing Research in India (CMMR 2011, FRSM 2011)

Abstract

In this article we explain how perceptual control of synthesis processes can be achieved through a multidisciplinary approach relating physical and signal properties of sound sources to evocations induced by sounds. This approach is applied to environmental and abstract sounds in 3 different experiments. In the first experiment a perceptual control of synthesized impact sounds evoking sound sources of different materials and shapes is presented. The second experiment describes an immersive environmental synthesizer simulating different kinds of environmental sounds evoking natural events such as rain, waves, wind and fire. In the last example motion evoked by abstract sounds is investigated. A tool for describing perceived motion through drawings is proposed in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aramaki, M., Besson, M., Kronland-Martinet, R., Ystad, S.: Timbre Perception of Sounds from Impacted Materials: Behavioral, Electrophysiological and Acoustic Approaches. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds.) CMMR 2008. LNCS, vol. 5493, pp. 1–17. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Aramaki, M., Besson, M., Kronland-Martinet, R., Ystad, S.: Controlling the perceived material in an impact sound synthesizer. IEEE Transactions on Audio, Speech, and Language Processing 19(2), 301–314 (2011)

    Article  Google Scholar 

  3. Aramaki, M., Gondre, C., Kronland-Martinet, R., Voinier, T., Ystad, S.: Imagine the Sounds: An Intuitive Control of an Impact Sound Synthesizer. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.) CMMR/ICAD 2009. LNCS, vol. 5954, pp. 408–421. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Aramaki, M., Kronland-Martinet, R.: Analysis-synthesis of impact sounds by real-time dynamic filtering. IEEE Transactions on Audio, Speech, and Language Processing 14(2), 695–705 (2006)

    Article  Google Scholar 

  5. Aramaki, M., Kronland-Martinet, R., Voinier, T., Ystad, S.: A percussive sound synthetizer based on physical and perceptual attributes. Computer Music Journal 30(2), 32–41 (2006)

    Article  Google Scholar 

  6. Aramaki, M., Marie, C., Kronland-Martinet, R., Ystad, S., Besson, M.: Sound categorization and conceptual priming for nonlinguistic and linguistic sounds. Journal of Cognitive Neuroscience 22(11), 2555–2569 (2010)

    Article  Google Scholar 

  7. Le Brun, M.: Digital waveshaping synthesis. JAES 27(4), 250–266 (1979)

    MathSciNet  Google Scholar 

  8. Bézat, M., Roussarie, V., Voinier, T., Kronland-Martinet, R., Ystad, S.: Car door closure sounds: Characterization of perceptual properties through analysis-synthesis approach. In: International Conference on Acoustics (ICA 2007), Madrid (2007)

    Google Scholar 

  9. Chowning, J.: The synthesis of complex audio spectra by means of frequency modulation. JAES 21(7), 526–534 (1973)

    Google Scholar 

  10. Chowning, J.: The simulation of moving sound sources. Journal of the Audio Engineering Society 19(1), 2–6 (1971)

    Google Scholar 

  11. Gaver, W.W.: How do we hear in the world? explorations in ecological acoustics. Ecological Psychology 5(4), 285–313 (1993)

    Article  MathSciNet  Google Scholar 

  12. Gaver, W.W.: What in the world do we hear? an ecological approach to auditory event perception. Ecological Psychology 5(1), 1–29 (1993)

    Article  MathSciNet  Google Scholar 

  13. Giordano, B.L., McAdams, S.: Material identification of real impact sounds: Effects of size variation in steel, wood, and plexiglass plates. Journal of the Acoustical Society of America 119(2), 1171–1181 (2006)

    Article  Google Scholar 

  14. Gobin, P., Kronland-Martinet, R., Lagesse, G.-A., Voinier, T., Ystad, S.: Designing Musical Interfaces with Composition in Mind. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 225–246. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Jot, J.M., Warusfel, O.: A real-time spatial sound processor for music and virtual reality applications. In: Proceedings of the International Computer Music Conference (ICMC 1995), pp. 294–295 (1995)

    Google Scholar 

  16. Kleczkowski, P.: Group additive synthesis. Computer Music Journal 13(1), 12–20 (1989)

    Article  MathSciNet  Google Scholar 

  17. Kronland-Martinet, R.: The use of the wavelet transform for the analysis, synthesis and processing of speech and music sounds. Computer Music Journal 12(4), 11–20 (1989)

    Article  Google Scholar 

  18. Kronland-Martinet, R., Guillemain, P., Ystad, S.: Modelling of natural sounds by time-frequency and wavelet representations. Organised Sound 2(3), 179–191 (1997)

    Article  Google Scholar 

  19. Kronland-Martinet, R., Voinier, T.: Real-time perceptual simulation of moving sources: Application to the leslie cabinet and 3d sound immersion. EURASIP Journal on Audio, Speech, and Music Processing 2008 (2008)

    Google Scholar 

  20. Mathews, M.: The digital computer as a musical instrument. Science 142(3592), 553–557 (1963)

    Article  Google Scholar 

  21. McAdams, S.: Perspectives on the contribution of timbre to musical structure. Computer Music Journal 23(3), 85–102 (2011)

    Article  Google Scholar 

  22. McAdams, S., Bigand, E.: Thinking in Sound: The cognitive psychology of human audition. Oxford University Press (1993)

    Google Scholar 

  23. Merer, A., Ystad, S., Aramaki, M., Kronland-Martinet, R.: Exploring Music Contents. In: Abstract Sounds and Their Applications in Audio and Perception Research, pp. 269–297. Springer, Heidelberg (2011)

    Google Scholar 

  24. Merer, A., Ystad, S., Kronland-Martinet, R., Aramaki, M.: Semiotics of Sounds Evoking Motions: Categorization and Acoustic Features. In: Kronland-Martinet, R., Ystad, S., Jensen, K. (eds.) CMMR 2007. LNCS, vol. 4969, pp. 139–158. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Miranda, E.R., Wanderley, M.: New Digital Musical Instruments: Control And Interaction Beyond the Keyboard. A-R Editions (2006)

    Google Scholar 

  26. Neuhoff, J., McBeath, M.: The doppler illusion: the influence of dynamic intensity change on perceived pitch. Journal of Experimental Psychology: Human Perception and Performance 22(4), 970–985 (1996)

    Article  Google Scholar 

  27. Rosenblum, L., Wier, C.C., Pastore, R.: Relative effectiveness of three stimulus variables for locating a moving sound source. Perception 16(2), 175–186 (1987)

    Article  Google Scholar 

  28. Schön, D., Kronland-Martinet, R., Ystad, S., Besson, M.: The evocative power of sounds: Conceptual priming between words and nonverbal sounds. Journal of Cognitive Neuroscience 22(5), 1026–1035 (2010)

    Article  Google Scholar 

  29. Sciabica, J., Bezat, M., Roussarie, V., Kronland-Martinet, R., Ystad, S.: Towards the timbre modeling of interior car sound. In: 15th International Conference on Auditory Display, Copenhagen (2009)

    Google Scholar 

  30. Terhardt, E., Stoll, G., Seewann, M.: Pitch of complex signals according to virtual-pitch theory: Tests, examples, and predictions. Journal of Acoustical Society of America 71, 671–678 (1982)

    Article  Google Scholar 

  31. Verron, C., Aramaki, M., Kronland-Martinet, R., Pallone, G.: A 3d immersive synthesizer for environmental sounds. IEEE Transactions on Audio, Speech, and Language Processing 18(6), 1550–1561 (2010)

    Article  Google Scholar 

  32. Verron, C., Pallone, G., Aramaki, M., Kronland-Martinet, R.: Controlling a spatialized environmental sound synthesizer. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, October 18-21, pp. 321–324 (2009)

    Google Scholar 

  33. Verron, C., Aramaki, M., Kronland-Martinet, R., Pallone, G.: Spatialized additive synthesis. In: Acoustics 2008, Paris, France (June 2008), http://hal.archives-ouvertes.fr/hal-00463365 , oR 20 OR 20 CIFRE

  34. Verron, C., Aramaki, M., Kronland-Martinet, R., Pallone, G.: Analysis/synthesis and spatialization of noisy environmental sounds. In: Proc. of the 15th International Conference on Auditory Display, Copenhague, Danemark, pp. 36–41 (2009)

    Google Scholar 

  35. Warren, J., Zielinski, B., Green, G., Rauschecker, J.P., Griffiths, T.: Perception of sound-source motion by the human brain. Neuron 34(1), 139–148 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aramaki, M., Kronland-Martinet, R., Ystad, S. (2012). Perceptual Control of Environmental Sound Synthesis. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K., Mohanty, S. (eds) Speech, Sound and Music Processing: Embracing Research in India. CMMR FRSM 2011 2011. Lecture Notes in Computer Science, vol 7172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31980-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31980-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31979-2

  • Online ISBN: 978-3-642-31980-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics