Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 1293 Accesses

Abstract

In this chapter, information on the wrist anatomy, kinematics and its mechanical behaviours is presented. It commences with a brief explanation on the complexity of the joint, which covers the structure of its hard and soft tissues. All the eight bones constructing the joint were categorized into several groups according to their respective positions. The associated tendons together with five main muscles were well identified in the literature, and thus sufficiently presented in this chapter. This complex joint with numerous articulations appears with many articular cartilages, thus the function are thoroughly explained in this chapter. Further details are presented in the following subsections, which cover description on the structure of each bone, the elements constructing the articular cartilage together with the associated pathology condition and the ligamentous structure. All of these components are essential to bring functions to the joint, allowing its mobility and sustainability. Information on the kinematics of the joint is presented in the last sub-section. This chapter provides sufficient information to assist understanding for the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Netter FH (2003) Atlas of human anatomy, 3rd edn. Icon Learning Systems, Teterboro

    Google Scholar 

  2. Gislason MK, Nash DH, Nicol A, Kanellopoulos A, Bransby-Zachary M, Hems T, Condon B, Stansfield B (2009) A three-dimensional finite element model of maximal grip loading in the human wrist. Proc Inst Mech Eng 223(7):849–861

    Google Scholar 

  3. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P (1999) Load transfer analysis of the distal radius from in vivo high-resolution CT-imaging. J Biomech 32(8):821–828

    Article  Google Scholar 

  4. Polikeit A, Nolte LP, Ferguson SJSJ (2004) Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit. J Biomech 37(7):1061–1069

    Article  Google Scholar 

  5. Schmitt R (2006) Funktionelle Anatomie und Biomechanik des Karpus. Der Radiologe 46(8):638–648

    Article  Google Scholar 

  6. Berger RA (1996) The anatomy and basic biomechanics of the wrist joint. J Hand Ther 9(2):84–93

    Article  Google Scholar 

  7. An K, Berger RA (1991) Biomechanics of the wrist joint. Springer, New York

    Google Scholar 

  8. McGrouther DA. HP interactive hand-anatomy CD, Primal Pictures, v.1.0

    Google Scholar 

  9. Margareta Nordin VHF (2001) Basic biomechanics of the musculoskeletal system, 3rd edn edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  10. Berger RA (2001) The anatomy of the ligaments of the wrist and distal radioulnar joints. Clin Orthop Relat Res 383:32–40

    Article  Google Scholar 

  11. Gerard J, Tortora BD (2009) Principles of anatomy and physiology, 12th edn. Wiley, USA

    Google Scholar 

  12. James CB, Uhl TL (2001) A review of articular cartilage pathology and the use of glucosamine sulfate. J Athl Train 36(4):413–419

    Google Scholar 

  13. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    Google Scholar 

  14. Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40

    Google Scholar 

  15. Henderson IJP, La Valette DP (2005) Subchondral bone overgrowth in the presence of full-thickness cartilage defects in the knee. Knee 12(6):435–440

    Article  Google Scholar 

  16. Meyer EG, Baumer TG, Slade JM, Smith WE, Haut RC (2008) Tibiofemoral contact pressures and osteochondral microtrauma during anterior cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee. Am J Sports Med 36(10):1966–1977

    Article  Google Scholar 

  17. Boyd SK, Müller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17(4):687–694

    Article  Google Scholar 

  18. Lindau T, Adlercreutz C, Aspenberg P (2003) Cartilage injuries in distal radial fractures. Acta Orthop Scand 74(3):327–331

    Article  Google Scholar 

  19. Heinegard D, Saxne T (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7(1):50–56

    Article  Google Scholar 

  20. Berger RA (1997) The ligaments of the wrist. A current overview of anatomy with considerations of their potential functions. Hand Clin 13(1):63–82

    Google Scholar 

  21. Nowalk MD, Logan SE (1991) Distinguishing biomechanical properties of intrinsic and extrinsic human wrist ligaments. J Biomech Eng 113(1):85–93

    Article  Google Scholar 

  22. Viegas SF, Yamaguchi S, Boyd NL, Patterson RM (1999) The dorsal ligaments of the wrist: anatomy, mechanical properties, and function. J Hand Surg 24(3):456–468

    Article  Google Scholar 

  23. Brumbaugh RB, Crowninshield RD, Blair WF, Andrews JG (1982) An in vivo study of normal wrist kinematics. J Biomech Eng 104(3):176–181

    Article  Google Scholar 

  24. Landsmeer JM (1961) Studies in the anatomy of articulation. I. The equilibrium of the “intercalated” bone. Acta Morphologica Neerlando-Scandinavica 3:287–303

    Google Scholar 

  25. Macconaill MA (1941) The mechanical anatomy of the carpus and its bearings on some surgical problems. J Anat 75(Pt 2):166–175

    Google Scholar 

  26. Volz RG, Lieb M, Benjamin J (1980) Biomechanics of the wrist. Clin Orthop Relat Res 149:112–117

    Google Scholar 

  27. Youm Y, McMurthy RY, Flatt AE, Gillespie TE (1978) Kinematics of the wrist. I. An experimental study of radial-ulnar deviation and flexion-extension. J Bone Joint Surg 60(4):423–431

    Google Scholar 

  28. Nordin Margareta, Frankel VH (2001) Basic biomechanics of the musculoskeletal system, 3rd edn. Lippincott Williams & Wikins, Pennsylvania

    Google Scholar 

  29. Feipel V, Rooze M (1999) Three-dimensional motion patterns of the carpal bones: an in vivo study using three-dimensional computed tomography and clinical applications. Surg Radiol Anat 21(2):125–131

    Article  Google Scholar 

  30. Moojen TM, Snel JG, Ritt MJPF, Venema HW, Kauer JMG, Bos KE (2003) In vivo analysis of carpal kinematics and comparative review of the literature. J Hand Surg 28(1):81–87

    Article  Google Scholar 

  31. Wolfe SW, Neu C, Crisco JJ (2000) In vivo scaphoid, lunate, and capitate kinematics in flexion and in extension. J Hand Surg 25(5):860–869

    Article  Google Scholar 

  32. Neu CP, Crisco JJ, Wolfe SW (2001) In vivo kinematic behavior of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation. J Biomech 34(11):1429–1438

    Article  Google Scholar 

  33. Salvia P, Woestyn L, David JH, Feipel V, Van S, Jan S, Klein P, Rooze M (2000) Analysis of helical axes, pivot and envelope in active wrist circumduction. Clin Biomech 15(2):103–111

    Article  Google Scholar 

  34. Patterson RM, Nicodemus CL, Viegas SF, Elder KW, Rosenblatt J (1998) High-speed, three-dimensional kinematic analysis of the normal wrist. J Hand Surg 23(3):446–453

    Article  Google Scholar 

  35. Moojen TM, Snel JG, Ritt MJPF, Venema HW, den Heeten GJ, Bos KE (2001) Pisiform kinematics in vivo. J Hand Surg 26(5):901–907

    Article  Google Scholar 

  36. Taleisnik J (1984) Classification of carpal instability. Bulletin Hosp Joint Dis Orthop Inst 44(2):511–531

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Nazri Bajuri .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajuri, M.N., Abdul Kadir, M.R. (2013). The Wrist Joint. In: Computational Biomechanics of the Wrist Joint. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31906-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31906-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31905-1

  • Online ISBN: 978-3-642-31906-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics