Skip to main content

Measures of Observables and Measures of Fuzziness

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

The key aims of modern scientific work have generally been to find relationships between observed phenomena, construct mathematical formulas that describe these relationships, take measurements of the observables, and define axioms using terms that are as exact as possible. In many circumstances, the exactness of observed phenomena is limited – or can only be measured with less than perfect accuracy. However, another problem arises if the concepts of a scientific theory do not fit with the picture that scientists use to understand their observations and experimental results. How to deal with such situations is a question that has intrigued many scientists and philosophers. In the 20th century two scientific theories appeared that change scientist’s views from classical to non-classical and on what is measurable: quantum mechanics and fuzzy set theory. This paper focuses on these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L.A.: From Circuit Theory to System Theory. Proc. IRE 50(5), 856–865 (1962)

    Article  MathSciNet  Google Scholar 

  2. Zadeh, L.A.: Fuzzy Sets and Systems. In: Fox, J. (ed.) System Theory, Microwave Res. Inst. Symp. Series XV, pp. 29–37. Polytechnic Press, Brooklyn (1965)

    Google Scholar 

  3. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. F. Physik. 37, 86–867 (1926)

    Article  Google Scholar 

  4. Born, M.: Das Adiabatenprinzip in der Quantenmechanik. Z. F. Physik. 40, 167–191 (1926)

    Article  MATH  Google Scholar 

  5. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton Univ. Press, Princeton (1955)

    MATH  Google Scholar 

  6. Birkhoff, G., von Neumann, J.: The Logic of Quantum Mechanics. Annals of Mathematics, Series 2 37, 823 (1936)

    Article  Google Scholar 

  7. Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. W. A. Benjamin, New York (1963)

    MATH  Google Scholar 

  8. Kolmogorov, A.: Foundations of the Theory of Probability, 2nd edn. Chelsea, New York (1956); Grundbegriffe der Wahrscheinlichkeitsrechnung. Julius Springer, Berlin (1933)

    MATH  Google Scholar 

  9. Suppes, P.: Probability Concepts in Quantum Mechanics. Phil. of Sci. 28, 378–389 (1961)

    Article  Google Scholar 

  10. Suppes, P.: The Probabilistic Argument for a Non-Classical Logic of Quantum Mechanics. Philosophy of Science 33, 14–21 (1966)

    Article  MathSciNet  Google Scholar 

  11. Gudder, S.P.: Quantum Probability. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  12. Pitowski, I.: Quantum Probability - Quantum Logic. LNP, p. 321. Springer, Berlin (1989)

    Google Scholar 

  13. Seising, R. (guest ed.): Special Issue: Fuzzy and Quantum Systems. Int. J. of General Systems 40(1), 1–9 (2011)

    Article  MathSciNet  Google Scholar 

  14. Menger, K.: Statistical Metrics. Proc. Natl. Acad. Sci., U.S.A. 28, 535–537 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  15. Menger, K.: Probabilistic geometry. Proc. Natl. Acad. Sci. 37, 226–229 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Menger, K.: Probabilistic Theories of Relations. Proc. Natl. Acad. Sci. 37, 178–180 (1951)

    Article  MathSciNet  Google Scholar 

  17. Menger, K.: Ensembles flous et fonctions aléatoires. Comptes Rendus Académie des Sciences 37, 226–229 (1951)

    MathSciNet  MATH  Google Scholar 

  18. Menger, K.: Geometry and Positivism. A Probabilistic Microgeometry. In: Menger, K. (ed.) Selected Papers in Logic and Foundations, Didactics, Economics, pp. 225–234. D. Reidel Publ. Comp, Dordrecht (1979)

    Chapter  Google Scholar 

  19. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik. 43, 172–198 (1927)

    Article  MATH  Google Scholar 

  20. Seising, R.: The Fuzzification of Systems. In: The Genesis of Fuzzy Set Theory and Its Initial Applications - Its Development to the 1970s. Springer, Berlin (2007)

    Google Scholar 

  21. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Watanabe, S.: Modified concepts of logic, probability, and information based on generalized continuous characteristic function. Information and Control 15, 1–21 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Watanabe, S.: Knowing and guessing. John Wiley & Sons, New York (1969)

    MATH  Google Scholar 

  24. Termini, S.: Interview with R. Seising. Newsletter Philosophy and Soft Computing 2(2), 7–14 (2010), http://www.eusflat.org/research_wg_phil/Newsletter_Phil_3.pdf

    Google Scholar 

  25. de Luca, A., Termini, S.: A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory. Information and Control 20(4), 301–312 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trillas, E.: Interview with R. Seising. Newsletter Philosophy and Soft Computing 2(1), 7–11 (2009), http://www.eusflat.org/research_wg_phil/Newsletter_Phil_1.pdf

    Google Scholar 

  27. Sugeno, M.: Interview with R. Seising. Newsletter Philosophy and Soft Computing 6(1) (to appear, 2012)

    Google Scholar 

  28. Sugeno, M.: Fuzzy Measure and Fuzzy Integral. Transactions of the Society of Instrument and Control Engineers 8(2), 218–226 (1972) (Japanese)

    Google Scholar 

  29. Sugeno, M.: Theory of Fuzzy Integrals and its applications. Ph. D. Diss., Tokyo (1974)

    Google Scholar 

  30. Klir, G., Wang, Z.: Fuzzy measure Theory. Plenum Press, New York (1992)

    MATH  Google Scholar 

  31. Choquet, G.: Theory of capacities. Annales de l’institut Fourier, tome 5, 131–295 (1954)

    Article  MathSciNet  Google Scholar 

  32. Garmendia, L.: The Evolution of the Concept of Fuzzy Measure. Studies in Computational Intelligence (SCI) 5, 185–200 (2005)

    Google Scholar 

  33. Zi-Xiao, W.: Fuzzy measures and Measures of Fuzziness. J. Math. Analysis and Appl. 104(2), 589–601 (1984)

    Article  MATH  Google Scholar 

  34. Mesiar, R.: Fuzzy Measures and Integration. Fuzzy Sets and Systems 156(3), 365–370 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dombi, J., Porkoláb, L.: Measures of Fuzziness. Ann. Univ. Sci. Budapest, Sect. Comp. 12, 69–78 (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seising, R. (2012). Measures of Observables and Measures of Fuzziness. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31715-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31714-9

  • Online ISBN: 978-3-642-31715-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics