Skip to main content

Generalised Jacobians in Cryptography and Coding Theory

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7369))

Included in the following conference series:

Abstract

The use of generalised Jacobians in discrete logarithm based cryptosystems has so far been rather limited since they offer no advantage over traditional discrete logarithm based systems. In this paper we continue the search for possible applications in two directions.

Firstly, we investigate pairings on generalised Jacobians and show that these are insecure. Secondly, generalising and extending prior work, we show how the discrete logarithm problem in generalised Jacobians can be reduced to the minimal non zero weight word and maximum likelihood decoding problems in generalised algebraic geometric codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augot, D., Morain, F.: Discrete logarithm computations over finite fields using Reed-Solomon codes (2012), http://hal.inria.fr/hal-00672050

  2. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. In: Melles, C.G., et al. (eds.) Topics in Algebraic and Noncommutative Geometry; Proceedings in Memory of Ruth Michler, Luminy, France, Annapolis, MD, USA, July 20-22, October 25-28. American Mathematical Society (AMS), Providence (2001); Contemp. Math. 324, 71–90 (2003)

    Google Scholar 

  3. Cheng, Q.: Hard problems of algebraic geometry codes. IEEE Trans. Inform. Theory 54(1), 402–406 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cheng, Q., Wan, D.: On the list and bounded distance decodability of Reed-Solomon codes. SIAM J. Comput. 37(1), 195–209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, Q., Wan, D.: Complexity of Decoding Positive-Rate Reed-Solomon Codes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 283–293. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Déchène, I.: Arithmetic of Generalized Jacobians. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 421–435. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Déchène, I.: On the security of generalized Jacobian cryptosystems. Adv. Math. Commun. 1(4), 413–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdős, P., Rényi, A.: Probabilistic methods in group theory. J. Analyse Math. 14, 127–138 (1965)

    Article  MathSciNet  Google Scholar 

  9. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comp. 62, 865–874 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Galbraith, S.D., Smith, B.: Discrete Logarithms in Generalized Jacobians (2006), http://hal.inria.fr/inria-00537887

  11. Galbraith, S.D., Hess, F., Vercauteren, F.: Aspects of pairing inversion. IEEE Trans. Inf. Theory 54(12), 5719–5728 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasse, H.: Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper. J. Reine Angew. Math. 172, 37–54 (1934)

    Google Scholar 

  13. Hess, F.: Computing Riemann-Roch spaces in algebraic function fields and related topics. J. Symbolic Comp. 33(4), 425–445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hess, F.: A note on the Tate pairing of curves over finite fields. Arch. Math. 82, 28–32 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hess, F., Pauli, S., Pohst, M.E.: Computing the multiplicative group of residue class rings. Math. Comp. 72(243), 1531–1548 (2003) (electronic)

    Google Scholar 

  16. Huang, M.-D., Raskind, W.: A multilinear generalization of the Tate pairing. In: McGuire, G., et al. (eds.) Finite Fields. Theory and Applications. Proceedings of the 9th International Conference on Finite Fields and Applications, Dublin, Ireland, July 13-17, American Mathematical Society (AMS), Providence (2009); Contemporary Mathematics 518, 255–263 (2010)

    Google Scholar 

  17. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an application to elliptic curve cryptography. J. Number Theory 129(6), 1491–1504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohel, D.: Constructive and destructive facets of torus-based cryptography (2004), http://echidna.maths.usyd.edu.au/kohel/pub/torus.ps

  19. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Authenticated Data Structures with Multilinear Forms. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 246–264. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Serre, J.-P.: Algebraic groups and class fields, Transl. of the French edn. Graduate Texts in Mathematics, vol. 117, ix, 207 p. Springer, New York (1988)

    Google Scholar 

  21. Stichtenoth, H.: Algebraic function fields and codes, 2nd edn. Graduate Texts in Mathematics, vol. 254, xiii, 355 p. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hess, F. (2012). Generalised Jacobians in Cryptography and Coding Theory. In: Özbudak, F., Rodríguez-Henríquez, F. (eds) Arithmetic of Finite Fields. WAIFI 2012. Lecture Notes in Computer Science, vol 7369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31662-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31662-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31661-6

  • Online ISBN: 978-3-642-31662-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics