Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7317))

Abstract

Knuth (1990) introduced the class of nested formulas and showed that their satisfiability can be decided in polynomial time. We show that, parameterized by the size of a smallest strong backdoor set to the base class of nested formulas, computing the number of satisfying assignments of any CNF formula is fixed-parameter tractable. Thus, for any k > 0, the satisfiability problem can be solved in polynomial time for any formula F for which there exists a set B of at most k variables such that for every truth assignment τ to B, the reduced formula F[τ] is nested; moreover, the degree of the polynomial is independent of k.

Our algorithm uses the grid-minor theorem of Robertson and Seymour (1986) to either find that the incidence graph of the formula has bounded treewidth—a case that is solved by model checking for monadic second order logic—or to find many vertex-disjoint obstructions in the incidence graph. For the latter case, new combinatorial arguments are used to find a small backdoor set. Combining both cases leads to an approximation algorithm producing a strong backdoor set whose size is upper bounded by a function of the optimum. Going through all assignments to this set of variables and using Knuth’s algorithm, the satisfiability of the input formula can be decided. With a similar approach, one can also count the number of satisfying assignments of the given formula.

The full version of the paper is available on arXiv [16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biedl, T., Henderson, P.: Nested SAT graphs have treewidth three. Technical Report CS-2004-70. University of Waterloo (2004)

    Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. of STOC 1971, pp. 151–158 (1971)

    Google Scholar 

  5. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier (1990)

    Google Scholar 

  6. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer (2010)

    Google Scholar 

  7. Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the Complexity of Backdoor Detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)

    Google Scholar 

  9. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35(3), 727–739 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discr. Appl. Math. 156(4), 511–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer (2006)

    Google Scholar 

  12. Gaspers, S.: From edge-disjoint paths to independent paths. Technical Report 1203.4483, arXiv (2012)

    Google Scholar 

  13. Gaspers, S., Szeider, S.: Backdoors to Acyclic SAT. In: Czumaj, A., et al. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 363–374. Springer, Heidelberg (2012)

    Google Scholar 

  14. Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., Downey, R.G., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)

    Google Scholar 

  15. Gaspers, S., Szeider, S.: Strong backdoors to bounded treewidth SAT. Technical Report 1204.6233, arXiv (2012)

    Google Scholar 

  16. Gaspers, S., Szeider, S.: Strong backdoors to nested satisfiability. Technical Report 1202.4331, arXiv (2012)

    Google Scholar 

  17. Kawarabayashi, K.-I., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time. J. Comb. Theory, Ser. B 102(2), 424–435 (2012)

    Article  MATH  Google Scholar 

  18. Kawarabayashi, K.-I., Mohar, B., Reed, B.A.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: Proc. of FOCS 2008, pp. 771–780 (2008)

    Google Scholar 

  19. Kirousis, L.M., Serna, M.J., Spirakis, P.G.: Parallel complexity of the connected subgraph problem. SIAM J. Comput. 22(3), 573–586 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knuth, D.E.: Nested satisfiability. Acta Informatica 28(1), 1–6 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kratochvíl, J., Křivánek, M.: Satisfiability and co-nested formulas. Acta Inf. 30, 397–403 (1993)

    Article  MATH  Google Scholar 

  22. Levin, L.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)

    Google Scholar 

  23. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)

    Article  Google Scholar 

  24. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3-4), 807–822 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)

    MATH  Google Scholar 

  26. Mohar, B.: Embedding graphs in an arbitrary surface in linear time. In: Proc. of STOC 1996, pp. 392–397 (1996)

    Google Scholar 

  27. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2006)

    Google Scholar 

  28. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Proc. of SAT 2004, pp. 96–103 (2004)

    Google Scholar 

  29. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta Inf. 44(7-8), 509–523 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. Theory, Ser. B 41(1), 92–114 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory, Ser. B 62(2), 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen 114(1), 570–590 (1937)

    Article  MathSciNet  Google Scholar 

  37. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proc. of IJCAI 2003, pp. 1173–1178 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaspers, S., Szeider, S. (2012). Strong Backdoors to Nested Satisfiability. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31612-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31611-1

  • Online ISBN: 978-3-642-31612-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics