Skip to main content

A Dependent LP-Rounding Approach for the k-Median Problem

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

In this paper, we revisit the classical k-median problem. Using the standard LP relaxation for k-median, we give an efficient algorithm to construct a probability distribution on sets of k centers that matches the marginals specified by the optimal LP solution. Analyzing the approximation ratio of our algorithm presents significant technical difficulties: we are able to show an upper bound of 3.25. While this is worse than the current best known 3 + ε guarantee of [2], because: (1) it leads to 3.25 approximation algorithms for some generalizations of the k-median problem, including the k-facility location problem introduced in [10], (2) our algorithm runs in \(\tilde{O}(k^3 n^2/\delta^2)\) time to achieve 3.25(1 + δ)-approximation compared to the O(n 8) time required by the local search algorithm of [2] to guarantee a 3.25 approximation, and (3) our approach has the potential to beat the decade old bound of 3 + ε for k-median.

We also give a 34-approximation for the knapsack median problem, which greatly improves the approximation constant in [13]. Using the same technique, we also give a 9-approximation for matroid median problem introduced in [11], improving on their 16-approximation.

A full version of this paper is available at the authors’ web pages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, A., Rajagopalan, R., Shmoys, D.B.: Lagrangian Relaxation for the k-Median Problem: New Insights and Continuity Properties. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 31–42. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k-median and facility location problems. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 21–29. ACM, New York (2001), http://doi.acm.org/10.1145/380752.380755

    Chapter  Google Scholar 

  3. Bradley, P.S., Fayyad, U.M., Mangasarian, O.L.: Mathematical programming for data mining: Formulations and challenges. INFORMS Journal on Computing 11, 217–238 (1998)

    Article  MathSciNet  Google Scholar 

  4. Byrka, J.: An Optimal Bifactor Approximation Algorithm for the Metric Uncapacitated Facility Location Problem. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 29–43. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Byrka, J., Srinivasan, A., Swamy, C.: Fault-Tolerant Facility Location: A Randomized Dependent LP-Rounding Algorithm. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 244–257. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 378–388 (1999)

    Google Scholar 

  7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem (extended abstract). In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC 1999, pp. 1–10. ACM, New York (1999), http://doi.acm.org/10.1145/301250.301257

    Chapter  Google Scholar 

  8. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the uncapacitated facility location problem. SIAM J. Comput. 33(1), 1–25 (2004)

    Article  MathSciNet  Google Scholar 

  9. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 731–740. ACM, New York (2002), http://doi.acm.org/10.1145/509907.510012

    Chapter  Google Scholar 

  10. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM 48(2), 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 1117–1130 (2011)

    Google Scholar 

  12. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating warehouses, vol. 9(9), pp. 643–666 (July 1963)

    Google Scholar 

  13. Kumar, A.: Constant factor approximation algorithm for the knapsack median problem. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 824–832. SIAM (2012), http://dl.acm.org/citation.cfm?id=2095116.2095182

  14. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Lin, J.H., Vitter, J.S.: Approximation algorithms for geometric median problems. Inf. Process. Lett. 44, 245–249 (1992), http://portal.acm.org/citation.cfm?id=152566.152569

    Article  MathSciNet  MATH  Google Scholar 

  16. Manne, A.: Plant location under economies-of-scale-decentralization and computation. Managment Science (1964)

    Google Scholar 

  17. Young, N.E.: K-medians, facility location, and the chernoff-wald bound. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 86–95. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000), http://portal.acm.org/citation.cfm?id=338219.338239

  18. Zhang, P.: A New Approximation Algorithm for the k-Facility Location Problem. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 217–230. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11750321_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charikar, M., Li, S. (2012). A Dependent LP-Rounding Approach for the k-Median Problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics