Skip to main content

Jumping Robot with a Tunable Suspension Based on Artificial Muscles

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

This paper describes the design and control of a suspension based on electroactive polymers for controlling the landing dynamics of a jumping robot. Tunable suspension elements can electrically change their stiffness up to a factor of 10 in less than 0.01 seconds. We discuss design parameters and performance relevant to bio-inspired systems and demonstrate the ability to operate in positive (actuator), neutral (spring-like), or negative (damping or braking) workloops. When applied to a single-legged robot, positive workloops allow sustained periodic hopping while negative workloops can be used to rapidly achieve equilibrium during a landing event, acting in a similar manner to muscle in jumping animals. Extended bio-inspired applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMahon, T.A.: The role of compliance in mammalian running gaits. Journal of Experimental Biology 115, 263–282 (1985)

    Google Scholar 

  2. Brown, I., Loeb, G.: A reductionist approach to creating and using neuromusculoskeletal models. Biomechanics and Neural Control of Posture and Movement (2000)

    Google Scholar 

  3. Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Gnther, M.: Intelligence by mechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365(2007), 199–220 (1850)

    Google Scholar 

  4. Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology 202(23), 3325–3332 (1999)

    Google Scholar 

  5. Kim, S., Clark, J.E., Cutkosky, M.R.: iSprawl: Design and tuning for high-speed autonomous open-loop running. The International Journal of Robotics Research 25(9), 903–912 (2006)

    Article  Google Scholar 

  6. Dyhre-Poulsen, P., Simonsen, E., Voigt, M.: Dynamic control of muscle stiffness and h reflex modulation during hopping and jumping in man. Journal of Physiology, 287–304 (1991)

    Google Scholar 

  7. Farley, C.T., Houdijk, H.H.P., Van Strien, C., Louie, M.: Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of Applied Physiology 85(3), 1044–1055 (1998)

    Google Scholar 

  8. Lussier Desbiens, A., Asbeck, A., Cutkosky, M.R.: Landing, perching and taking off from vertical surfaces. The International Journal of Robotics Research 30(3), 355–370 (2011)

    Article  Google Scholar 

  9. Bizzi, E., Accornero, N., Chapple, W., Hogan, N.: Posture control and trajectory formation during arm movement. Journal of Neuroscience 4, 2738–2744 (1984)

    Google Scholar 

  10. Van Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Compliant actuator designs. IEEE Robotics and Automation Magazine, 81–94 (September 2009)

    Google Scholar 

  11. Raibert, M.H., Brown, H.B., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. The International Journal of Robotics Research 3(2), 75–92 (1984)

    Article  Google Scholar 

  12. Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Lefeber, D., Duran, B.M.Y., Beyl, P.: Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. International Journal of Robotics Research 25(4), 343–358 (2006)

    Article  Google Scholar 

  13. Hurst, J.W., Chestnutt, J.E., Rizzi, A.: Design and philosophy of the BiMASC, a highly dynamic biped. In: Proc of Intl. Conf. on Robotics and Automation (IEEE-ICRA), pp. 1863–1868 (April 2007)

    Google Scholar 

  14. Galloway, K., Clark, J., Koditschek, D.: Design of a tunable stiffness composite leg for dynamic locomotion. In: Proc. of Intl. Design Engineering Technical Conf, ASME-IDETC/CIE (2009)

    Google Scholar 

  15. Tsagarakis, N.G., Sardellitti, I., Caldwell, D.: A new variable stiffness actuator (compact-vsa): Design and modeling. In: Proc. of Intl. Conf. on Intelligent Robots and Systems (2011)

    Google Scholar 

  16. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    Article  Google Scholar 

  17. Cianchetti, M., Mattoli, V., Mazzolai, B., Laschi, C., Dario, P.: A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensors and Actuators B: Chemical 142, 288–297 (2009)

    Article  Google Scholar 

  18. Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and articial muscles. Macromolecular Rapid Communications 31 (2009)

    Google Scholar 

  19. Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P. (eds.): Dielectric Elastomers as Electromechanical Transducers. Elsevier (2008)

    Google Scholar 

  20. Pelrine, R., Kornbluh, R., Prahlad, H., Sharma, S., Chavez, B., Czyzyk, D., Wong-Foy, A., Stanford, S.: Tear resistant electroactive polymer transducers. U.S. Patent (7,804,227) (2010)

    Google Scholar 

  21. Dastoor, S., Cutkosky, M.R.: Design of dielectric electroactive polymers for a compact and scalable variable stiffness device. In: Proc. of Intl. Conf. on Robotics and Automation, IEEE-ICRA (2012)

    Google Scholar 

  22. Kornbluh, R.: Fundamental configurations for dielectric elastomer actuators. In: Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P. (eds.) Dielectric Elastomers as Electromechanical Transducers. Elsevier (2008)

    Google Scholar 

  23. Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R.: Actuation response of polyacrylate dielectric elastomers. Journal of Intelligent Material Systems and Structures 13, 787–793 (2003)

    Article  Google Scholar 

  24. Josephson, R.K.: Mechanical power output from striated muscle during cyclic contraction. Journal of Experimental Biology 114, 493–512 (1985)

    Google Scholar 

  25. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehman, S.: How animals move: An integrative view. Science 288(5463), 100–106 (2000)

    Article  Google Scholar 

  26. Glassman, E.L., Desbiens, A.L., Tobenkin, M., Cutkosky, M., Tedrake, R.: Region of attraction estimation for a perching aircraft: A lyapunov method exploiting barrier certificates. In: Proc. of Intl. Conf. on Robotics and Automation, IEEE-ICRA (2012)

    Google Scholar 

  27. Hyde, J.M., Cutkosky, M.R.: Controlling contact transition. IEEE Control Systems 14, 25–30 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dastoor, S., Weiss, S., Stuart, H., Cutkosky, M. (2012). Jumping Robot with a Tunable Suspension Based on Artificial Muscles. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics