Skip to main content

Neuro-inspired Navigation Strategies Shifting for Robots: Integration of a Multiple Landmark Taxon Strategy

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

Rodents have been widely studied for their adaptive navigation capabilities. They are able to exhibit multiple navigation strategies; some based on simple sensory-motor associations, while others rely on the construction of cognitive maps. We previously proposed a computational model of parallel learning processes during navigation which could reproduce in simulation a wide set of rat behavioral data and which could adaptively control a robot in a changing environment. In this previous robotic implementation the visual approach (or taxon) strategy was however paying attention to the intra-maze landmark only and learned to approach it. Here we replaced this mechanism by a more realistic one where the robot autonomously learns to select relevant landmarks. We show experimentally that the new taxon strategy is efficient, and that it combines robustly with the planning strategy, so as to choose the most efficient strategy given the available sensory information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007)

    Article  Google Scholar 

  2. Arbib, M., Metta, G., van der Smagt, P.: Neurorobotics: From vision to action. In: Handbook of Robotics, pp. 1453–1480. Springer, Berlin (2008)

    Chapter  Google Scholar 

  3. Meyer, J.A., Guillot, A.: Biologically-inspired robots. In: Handbook of Robotics, pp. 1395–1422. Springer, Berlin (2008)

    Chapter  Google Scholar 

  4. Arleo, A., Gerstner, W.: Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biological Cybernetics 83(3), 287–299 (2000)

    Article  Google Scholar 

  5. Krichmar, J., Seth, A., Nitz, D., Fleischer, J., Edelman, G.: Spatial navigation and causal analysis in a brain-based device modeling cortical hippocampal interactions. Neuroinformatics 3(3), 147–169 (2005)

    Article  Google Scholar 

  6. Meyer, J.-A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., Berthoz, A.: The Psikharpax project: towards building an artificial rat. Robotics and Autonomous Systems 50(4), 211–223 (2005)

    Article  Google Scholar 

  7. Barrera, A., Weitzenfeld, A.: Biologically-inspired robot spatial cognition based on rat neurophysiological studies. Autonomous Robots 25, 147–169 (2008)

    Article  Google Scholar 

  8. Giovannangeli, C., Gaussier, P.: Autonomous vision-based navigation: Goal-oriented action planning by transient states prediction, cognitive map building, and sensory-motor learning. In: Proceedings of the International Conference on Intelligent Robots and Systems, vol. 1, pp. 281–297. University of California Press (2008)

    Google Scholar 

  9. Milford, M., Wyeth, G.: Persistent navigation and mapping using a biologically inspired slam system. The International Journal of Robotics Research 29(9), 1131–1153 (2010)

    Article  Google Scholar 

  10. Arleo, A., Rondi-Reig, L.: Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. Journal of Integrative Neuroscience 6(3), 327–366 (2007)

    Article  Google Scholar 

  11. Packard, M.G., Knowlton, B.J.: Learning and memory functions of the basal ganglia. Annual Review of Neuroscience 25, 563–593 (2002)

    Article  Google Scholar 

  12. Burgess, N.: Spatial cognition and the brain. Year In Cognitive Neuroscience 2008 1124, 77–97 (2008)

    Google Scholar 

  13. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Clarendon Press, Oxford (1978)

    Google Scholar 

  14. Johnson, A., Redish, A.D.: Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. Journal of Neuroscience 27(45), 12176–12189 (2007)

    Article  Google Scholar 

  15. Pearce, J.M., Roberts, A.D., Good, M.: Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors. Nature 396(6706), 75–77 (1998)

    Article  Google Scholar 

  16. Devan, B.D., White, N.M.: Parallel information processing in the dorsal striatum: Relation to hippocampal function. Journal of Neuroscience 19(7), 2789–2798 (1999)

    Google Scholar 

  17. Dollé, L., Sheynikhovich, D., Girard, B., Chavarriaga, R., Guillot, A.: Path planning versus cue responding: a bioinspired model of switching between navigation strategies. Biological Cybernetics 103(4), 299–317 (2010)

    Article  Google Scholar 

  18. Caluwaerts, K., Staffa, M., N’Guyen, S., Grand, C., Dollé, L., Favre-Félix, A., Girard, B., Khamassi, M.: A biologically inspired meta-control navigation system for the psikharpax rat robot. Bioinspiration and Biomimetics (to appear, 2012)

    Google Scholar 

  19. Stein, B.E., Meredith, M.A.: The merging of the senses. The MIT Press, Cambridge (1993)

    Google Scholar 

  20. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)

    Google Scholar 

  21. Gat, E.: On three-layer architectures. In: Kortenkamp, D., Bonnasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, pp. 195–210. AAAI Press (1998)

    Google Scholar 

  22. Kortenkamp, D., Simmons, R.: Robotic systems architectures and programming. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 187–206. Springer (2008)

    Google Scholar 

  23. Minguez, J., Lamiraux, F., Laumond, J.: Motion planning and obstacle avoidance. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 827–852. Springer (2008)

    Google Scholar 

  24. Keramati, M., Dezfouli, A., Piray, P.: Speed/accuracy trade-off between the habitual and goal-directed processes. PLoS Computational Biology 7(5), 1–25 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caluwaerts, K. et al. (2012). Neuro-inspired Navigation Strategies Shifting for Robots: Integration of a Multiple Landmark Taxon Strategy. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics