Skip to main content

The Dynamical Modeling of Cognitive Robot-Human Centered Interaction

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

In this paper we formulate basic principles of cognitive human-robot team dynamics following lessons from experimental neuroscience: 1) the cognitive team dynamics in a changing complex environment is transient and can be considered as a temporal sequence of metastable states; 2) the human mental resources –attention and working memory capacity that are available for the processing of sensory and robot generated information in relation to a specific goal– are finite; 3) the interactive cognitive team activity is robust against noise and at the same time sensitive to information from the environment. We suggest a basic dynamical model that describes the evolution of human cognitive and emotion modes and robot information modes together with the dynamics of mental resources. Using this model we have analyzed the team’s dynamical instability, introduced the dynamical description of the information flow capacity, and analyzed the features of the binding dynamics of information flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum.-Comput. Interact. 1, 203–275 (2007)

    Google Scholar 

  2. Goodrich, M.A., Pendleton, B., Sujit, P.B., Pinto, J.: Toward human interaction with bio-inspired robot teams. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2859–2864 (2011)

    Google Scholar 

  3. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, B., Sierhuis, M.: The Fundamental Principle of Coactive Design: Interdependence Must Shape Autonomy. In: De Vos, M., Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 172–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Rabinovich, M.I., Varona, P.: Robust transient dynamics and brain functions. Front Comput. Neurosci. 5, 24 (2011)

    Article  Google Scholar 

  5. Rabinovich, M.I., Afraimovich, V.S., Bick, C., Varona, P.: Information flow dynamics in the brain. Physics of Life Reviews 9, 51–73 (2012)

    Article  Google Scholar 

  6. Rabinovich, M.I., Afraimovich, V.S., Bick, C., Varona, P.: Instability, semantic dynamics and modeling brain data. Physics of Life Reviews 9, 80–83 (2012)

    Article  Google Scholar 

  7. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4, e1000072 (2008)

    Google Scholar 

  8. Rabinovich, M., Huerta, R., Laurent, G.: Neuroscience. Transient dynamics for neural processing. Science 321, 48–50 (2008)

    Article  Google Scholar 

  9. Rabinovich, M.I., Friston, K., Varona, P. (eds.): Principles of brain dynamics: global state interactions. MIT Press, Cambridge (2012)

    Google Scholar 

  10. Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., Heagy, J.F.: Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 7, 520–543 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freeman, W.J.: Comparison of Brain Models for Active vs. Passive Perception. Information Sciences 116, 97–107 (1999)

    Article  Google Scholar 

  12. Jirsa, V.K., Kelso, J.A.S. (eds.): Coordination Dynamics: Issues and Trends. Springer (2004)

    Google Scholar 

  13. Massaro, D.W., Friedman, D.: Models of integration given multiple sources of information. Psychol. Rev. 97, 225–252 (1990)

    Article  Google Scholar 

  14. Bongard, M.M.: Pattern Recognition (Original publication: Problema uznavania, Nauka Press, Moscow, 1967), Rochelle Park, N.J (1970)

    Google Scholar 

  15. Howard, R.A.: Information Value Theory. IEEE Transactions on Systems, Science and Cybernetics 2, 22–26 (1966)

    Article  Google Scholar 

  16. Madl, T., Baars, B.J., Franklin, S.: The timing of the cognitive cycle. PLoS One 6, e14803 (2011)

    Google Scholar 

  17. Rabinovich, M.I., Huerta, R., Varona, P.: Heteroclinic synchronization: ultrasubharmonic locking. Phys. Rev. Lett. 96, 141001 (2006)

    Article  Google Scholar 

  18. Rabinovich, M.I., Afraimovich, V.S., Varona, P.: Heteroclinic Binding. Dynamical Systems: An International Journal 25, 433–442 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Baker, G.L., Gollub, J.B.: Chaotic Dynamics: An Introduction. Cambridge University Press (1996)

    Google Scholar 

  20. Tononi, G.: Consciousness as integrated information: a provisional manifesto. Biol. Bull. 215, 216–242 (2008)

    Article  Google Scholar 

  21. Perlovsky, I.L.: Toward physics of the mind: Concepts, emotions, consciousness, and symbols. Physics of Life Reviews 3, 23–55 (2006)

    Article  Google Scholar 

  22. Maybin, J., Swann, J.: Everyday Creativity in Language: Textuality, Contextuality, and Critique. Applied Linguistics 28, 497–517 (2007)

    Article  Google Scholar 

  23. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)

    Article  Google Scholar 

  24. Liu, C., Chen, Q., Wang, D.: CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. IEEE Trans. Syst. Man Cybern. B Cybern. 41, 867–880 (2011)

    Article  MathSciNet  Google Scholar 

  25. Herrero-Carrón, F., Rodríguez, F.B., Varona, P.: Bio-inspired design strategies for central pattern generator control in modular robotics. Bioinspir. Biomim. 6, 16006 (2011)

    Article  Google Scholar 

  26. Arena, P., Fortuna, L., Lombardo, D., Patanè, L., Velarde, M.G.: The winnerless competition paradigm in cellular nonlinear networks: Models and applications. Int. J. Circuit Theory Appl. 37, 505–528 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rabinovich, M.I., Varona, P. (2012). The Dynamical Modeling of Cognitive Robot-Human Centered Interaction. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics