Skip to main content

A Framework for Mobile Robot Navigation Using a Temporal Population Code

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

Recently, we have proposed that the dense local and sparse long-range connectivity of the visual cortex accounts for the rapid and robust transformation of visual stimulus information into a temporal population code, or TPC. In this paper, we combine the canonical cortical computational principle of the TPC model with two other systems: an attention system and a hippocampus model. We evaluate whether the TPC encoding strategy can be efficiently used to generate a spatial representation of the environment. We benchmark our architecture using stimulus input from a real-world environment. We show that the mean correlation of the TPC representation in two different positions of the environment has a direct relationship with the distance between these locations. Furthermore, we show that this representation can lead to the formation of place cells. Our results suggest that TPC can be efficiently used in a high complexity task such as robot navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual Navigation for Mobile Robots: A Survey. J. Intell. Robotics Syst. 53(3), 263–296 (2008)

    Article  Google Scholar 

  2. Jun, S., Kim, Y., Lee, J.: Difference of wavelet SIFT based mobile robot navigation. In: 2009 IEEE International Conference on Control and Automation, pp. 2305–2310. IEEE (December 2009)

    Google Scholar 

  3. Koch, O., Walter, M.R., Huang, A.S., Teller, S.: Ground robot navigation using uncalibrated cameras. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2423–2430. IEEE (May 2010)

    Google Scholar 

  4. Binzegger, T., Douglas, R.J., Martin, K.A.C.: A quantitative map of the circuit of cat primary visual cortex. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 24(39), 8441–8453 (2004)

    Article  Google Scholar 

  5. Schubert, D., Kötter, R., Staiger, J.F.: Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits. Brain Structure & Function 212(2), 107–119 (2007)

    Article  Google Scholar 

  6. Liu, B.H., Wu, G.K., Arbuckle, R., Tao, H.W., Zhang, L.I.: Defining cortical frequency tuning with recurrent excitatory circuitry. Nature Neuroscience 10(12), 1594–1600 (2007)

    Article  Google Scholar 

  7. Nauhaus, I., Busse, L., Carandini, M., Ringach, D.L.: Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience 12(1), 70–76 (2009)

    Article  Google Scholar 

  8. Wyss, R., Konig, P., Verschure, P.F.M.J.: Invariant representations of visual patterns in a temporal population code. Proceedings of the National Academy of Sciences of the United States of America 100(1), 324–329 (2003)

    Article  Google Scholar 

  9. Wyss, R., Verschure, P.F.M.J., König, P.: Properties of a temporal population code. Reviews in the Neurosciences 14(1-2), 21–33 (2003)

    Article  Google Scholar 

  10. Wyss, R., König, P., Verschure, P.F.M.J.: A model of the ventral visual system based on temporal stability and local memory. PLoS Biology 4(5), e120 (2006)

    Google Scholar 

  11. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)

    Article  Google Scholar 

  12. Samonds, J.M., Bonds, A.B.: From another angle: Differences in cortical coding between fine and coarse discrimination of orientation. Journal of Neurophysiology 91(3), 1193–1202 (2004)

    Article  Google Scholar 

  13. Benucci, A., Frazor, R.A., Carandini, M.: Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55(1), 103–117 (2007)

    Article  Google Scholar 

  14. Gollisch, T., Meister, M.: Rapid Neural Coding in the Retina with Relative Spike Latencies. Science 319(5866), 1108–1111 (2008)

    Article  Google Scholar 

  15. MacEvoy, S.P., Tucker, T.R., Fitzpatrick, D.: A precise form of divisive suppression supports population coding in the primary visual cortex. Nature Neuroscience 12(5), 637–645 (2009)

    Article  Google Scholar 

  16. Carlsson, M.A., Knusel, P., Verschure, P.F.M.J., Hansson, B.S.: Spatio-temporal Ca2+ dynamics of moth olfactory projection neurones. European Journal of Neuroscience 22(3), 647–657 (2005)

    Article  Google Scholar 

  17. Knusel, P., Carlsson, M.A., Hansson, B.S., Pearce, T.C., Verschure, P.F.M.J.: Time and space are complementary encoding dimensions in the moth antennal lobe. Network 18(1), 35–62 (2007)

    Article  Google Scholar 

  18. Rennó-Costa, C., Luvizotto, A.L., Marcos, E., Duff, A., Sánchez-Fibla, M., Verschure, P.F.M.J.: Integrating Neuroscience-based Models Towards an Autonomous Biomimetic Synthetic. In: 2011 IEEE International Conference on RObotics and BIOmimetics (IEEE-ROBIO 2011), Phuket Island, Thailand. IEEE (2011)

    Google Scholar 

  19. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  20. Luvizotto, A., Rennó-Costa, C., Pattacini, U., Verschure, P.F.M.J.: The encoding of complex visual stimuli by a canonical model of the primary visual cortex: temporal population coding for face recognition on the iCub robot. In: IEEE International Conference on Robotics and Biomimetics, Thailand, p. 6 (2011)

    Google Scholar 

  21. de Almeida, L., Idiart, M., Lisman, J.E.: The input-output transformation of the hippocampal granule cells: from grid cells to place fields. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29(23), 7504–7512 (2009)

    Article  Google Scholar 

  22. Rennó-Costa, C., Lisman, J.E., Verschure, P.F.M.J.: The mechanism of rate remapping in the dentate gyrus. Neuron 68(6), 1051–1058 (2010)

    Article  Google Scholar 

  23. Mathews, Z., i Badia, S.B., Verschure, P.F.M.J.: PASAR: An integrated model of prediction, anticipation, sensation, attention and response for artificial sensorimotor systems. Information Sciences 186(1), 1–19 (2011)

    Article  Google Scholar 

  24. Rodieck, R.W., Stone, J.: Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology 28(5), 833 (1965)

    Google Scholar 

  25. Einevoll, G.T., Plesser, H.E.: Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cognitive Neurodynamics, 1–18 (November 2011)

    Google Scholar 

  26. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  27. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  28. Stettler, D.D., Das, A., Bennett, J., Gilbert, C.D.: Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex. Neuron 36(4), 739–750 (2002)

    Article  Google Scholar 

  29. de Almeida, L., Idiart, M., Lisman, J.E.: A second function of gamma frequency oscillations: an E%-max winner-take-all mechanism selects which cells fire. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29(23), 7497–7503 (2009)

    Article  Google Scholar 

  30. Hebb, D.O.: Studies of the organization of behavior. I. Behavior of the rat in a field orientation. Journal of Comparative Psychology 25, 333–353 (1932)

    Article  Google Scholar 

  31. Block, M.: A note on the refraction and image formation of the rat’s eye. Vision Research 9(6), 705–711 (1969)

    Article  Google Scholar 

  32. D’Angelo, P.: Hugin (2010)

    Google Scholar 

  33. Wyss, R., Verschure, P.F.M.J.: Bounded Invariance and the Formation of Place Fields. In: Advances in Neural Information Processing Systems 16. MIT Press (2004)

    Google Scholar 

  34. Zeil, J., Hofmann, M.I., Chahl, J.S.: Catchment areas of panoramic snapshots in outdoor scenes. Journal of the Optical Society of America A 20(3), 450 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luvizotto, A., Rennó-Costa, C., Verschure, P. (2012). A Framework for Mobile Robot Navigation Using a Temporal Population Code. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics