Skip to main content

Proof Complexity of Non-classical Logics

  • Chapter
Lectures on Logic and Computation (ESSLLI 2011, ESSLLI 2010)

Abstract

Proof complexity is an interdisciplinary area of research utilising techniques from logic, complexity, and combinatorics towards the main aim of understanding the complexity of theorem proving procedures. Traditionally, propositional proofs have been the main object of investigation in proof complexity. Due their richer expressivity and numerous applications within computer science, also non-classical logics have been intensively studied from a proof complexity perspective in the last decade, and a number of impressive results have been obtained.

In these notes we give an introduction to this recent field of proof complexity of non-classical logics. We cover results from proof complexity of modal, intuitionistic, and non-monotonic logics. Some of the results are surveyed, but in addition we provide full details of a recent exponential lower bound for modal logics due to Hrubeš [60] and explain the complexity of several sequent calculi for default logic [16,13]. To make the text self-contained, we also include necessary background information on classical proof systems and non-classical logics.

Part of these notes are based on the survey [12] and the research paper [13]. This paper was produced while the first author was visiting Sapienza University of Rome under support of grant N. 20517 by the John Templeton Foundation. The work of the second author was supported by the DFG-funded Research Centre on Spatial Cognition (SFB/TR 8), project I1-[OntoSpace].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: The complexity of the pigeonhole-principle. Combinatorica 14(4), 417–433 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom generators in propositional proof complexity. SIAM Journal on Computing 34(1), 67–88 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions. Combinatorica 7(1), 1–22 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amati, G., Aiello, L.C., Gabbay, D.M., Pirri, F.: A proof theoretical approach to default reasoning I: Tableaux for default logic. Journal of Logic and Computation 6(2), 205–231 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antoniou, G., Wang, K.: Default Logic. In: Handbook of the History of Logic, vol. 8, pp. 517–556. North-Holland (2007)

    Google Scholar 

  6. Areces, C., de Nivelle, H., de Rijke, M.: Resolution in Modal, Description and Hybrid Logic. Journal of Logic and Computation 11(5), 717–736 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Mathematical Society 73(3), 1–26 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P., Woods, A.: Exponential lower bounds for the pigeonhole principle. In: Proc. 24th ACM Symposium on Theory of Computing, pp. 200–220 (1992)

    Google Scholar 

  9. Beame, P.W., Pitassi, T., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3(2), 97–140 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beyersdorff, O.: On the correspondence between arithmetic theories and propositional proof systems – a survey. Mathematical Logic Quarterly 55(2), 116–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beyersdorff, O.: Proof Complexity of Non-classical Logics. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 15–27. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Beyersdorff, O., Meier, A., Müller, S., Thomas, M., Vollmer, H.: Proof complexity of propositional default logic. Archive for Mathematical Logic 50(7), 727–742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  15. Bonatti, P.A.: A Gentzen system for non-theorems, Technical Report CD/TR 93/52, Christian Doppler Labor für Expertensysteme (1993)

    Google Scholar 

  16. Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Transactions on Computational Logic 3(2), 226–278 (2002)

    Article  MathSciNet  Google Scholar 

  17. Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser (1995)

    Google Scholar 

  18. Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brouwer, L.E.J.: Over de Grondslagen der Wiskunde. Ph.D. thesis, Amsterdam (1907), Translation: On the foundation of mathematics. In: Heyting, A., (ed.) Brouwer, Collected Works I, pp.11–101. North-Holland, Amsterdam (1975)

    Google Scholar 

  21. Brouwer, L.E.J.: De onbetrouwbaarheid der logische principes. Tijdschrift voor Wijsbegeerte 2, 152–158 (1908), Translation: The unreliability of the logical principles, Ibid, pp. 107–111

    Google Scholar 

  22. Brouwer, L.E.J.: Historical Background, Principles and Methods of Intuitionism. South African Journal of Science, 139–146 (1952)

    Google Scholar 

  23. Buss, S.R.: The polynomial hierarchy and intuitionistic bounded arithmetic. In: Proc. Structure in Complexity Theory Conference, pp. 77–103 (1986)

    Google Scholar 

  24. Buss, S.R.: On model theory for intuitionstic bounded arithmetic with applications to independence. In: Buss, S.R., Scott, P.J. (eds.) Feasible Mathematics, pp. 27–47. Birkhäuser (1990)

    Google Scholar 

  25. Buss, S.R.: A note on bootstrapping intuitionistic bounded arithmetic. In: Aczel, P., Simmons, H., Wainer, S. (eds.) Proof Theory: a selection of papers from the Leeds Theory Programme 1990, pp. 142–169. Cambridge University Press (1992)

    Google Scholar 

  26. Buss, S.R.: An introduction to proof theory. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 1–78. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  27. Buss, S.R., Mints, G.: The complexity of the disjunction and existential properties in intuitionistic logic. Annals of Pure and Applied Logic 99(1-3), 93–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Buss, S.R., Pudlák, P.: On the computational content of intuitionistic propositional proofs. Annals of Pure and Applied Logic 109(1-2), 49–63 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cadoli, M., Schaerf, M.: A survey of complexity results for nonmonotonic logics. Journal of Logic Programming 17(2/3&4), 127–160 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Carnap, R.: Logische Syntax der Sprache. Kegan Paul (1934), English translation: The Logical Syntax of Language (1937)

    Google Scholar 

  31. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  32. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 174–183 (1996)

    Google Scholar 

  33. Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge University Press (2010)

    Google Scholar 

  34. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cook, S.A., Urquhart, A.: Functional interpretations of feasibly constructive arithmetic. Ann. Pure Appl. Logic 63(2), 103–200 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  37. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  38. De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Logic J. IGPL 8, 265–292 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient calculi and implementations. In: Handbook of Automated Reasoning, pp. 1241–1354. Elsevier and MIT Press (2001)

    Google Scholar 

  40. Dowd, M.: Model-theoretic aspects of P≠NP (1985) (unpublished manuscript)

    Google Scholar 

  41. Egly, U., Tompits, H.: Proof-complexity results for nonmonotonic reasoning. ACM Transactions on Computational Logic 2(3), 340–387 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ferrari, M., Fiorentini, C., Fiorino, G.: On the complexity of the disjunction property in intuitionistic and modal logics. ACM Transactions on Computational Logic 6(3), 519–538 (2005)

    Article  MathSciNet  Google Scholar 

  43. Fitting, M.: Handbook of Modal Logic. In: Modal Proof Theory. Studies in Logic and Practical Reasoning, vol. 3, pp. 85–138. Elsevier (2006)

    Google Scholar 

  44. Friedman, H.: One hundred and two problems in mathematical logic. The Journal of Symbolic Logic 40(2), 113–129 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gabbay, D.: Theoretical foundations of non-monotonic reasoning in expert systems. In: Logics and Models of Concurrent Systems, pp. 439–457. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  46. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics, vol. 148. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  47. Gabbay, D.M., Maksimova, L.: Interpolation and Definability: Modal and Intuitionistic Logics. Oxford Logic Guides, vol. 46. Clarendon Press, Oxford (2005)

    Book  MATH  Google Scholar 

  48. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 68–131 (1935)

    MathSciNet  MATH  Google Scholar 

  49. Brewka, G., Truszczynski, M., Marek, V.W. (eds.): Nonmonotonic Reasoning. Essays Celebrating its 30th Anniversary. College Publications (2011)

    Google Scholar 

  50. Ghilardi, S.: Unification in intuitionistic logic. The Journal of Symbolic Logic 64(2), 859–880 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Bulletin de la Classe des Sciences de l’Académie Royale de Belgique 15, 183–188 (1929)

    MATH  Google Scholar 

  52. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse Eines Mathematischen Kolloquiums 4, 34–40 (1933)

    MATH  Google Scholar 

  53. Goldblatt, R.: Mathematical modal logic: A view of its evolution. Journal of Applied Logic 1, 309–392 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  56. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 42–56 (1930)

    Google Scholar 

  57. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible \(\mathcal{SROIQ}\). In: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)

    Google Scholar 

  58. Hrubeš, P.: A lower bound for intuitionistic logic. Annals of Pure and Applied Logic 146(1), 72–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hrubeš, P.: Lower bounds for modal logics. The Journal of Symbolic Logic 72(3), 941–958 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Hrubeš, P.: On lengths of proofs in non-classical logics. Annals of Pure and Applied Logic 157(2-3), 194–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. The Journal of Symbolic Logic 66(1), 281–294 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Jeřábek, E.: Admissible rules of modal logics. Journal of Logic and Computation 15(4), 411–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Jeřábek, E.: Frege systems for extensible modal logics. Annals of Pure and Applied Logic 142, 366–379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Jeřábek, E.: Complexity of admissible rules. Archive for Mathematical Logic 46(2), 73–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Jeřábek, E.: Substitution Frege and extended Frege proof systems in non-classical logics. Annals of Pure and Applied Logic 159(1-2), 1–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Jeřábek, E.: Admissible rules of Łukasiewicz logic. Journal of Logic and Computation 20(2), 425–447 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Jeřábek, E.: Bases of admissible rules of Łukasiewicz logic. Journal of Logic and Computation 20(6), 1149–1163 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Kazakov, Y.: RIQ and SROIQ Are Harder than SHOIQ. In: Brewka, G., Lang, J. (eds.) KR, pp. 274–284. AAAI Press (2008)

    Google Scholar 

  69. Kolmogorov, A.N.: On the principle tertium non datur. Mathematics of the USSR, Sbornik 32, 646–667 (1925); Translation in: van Heijenoord, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic 1879-1931. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  70. Kracht, M.: Tools and Techniques in Modal Logic. Studies in Logic and the Foundations of Mathematics, vol. 142. Elsevier Science Publishers, Amsterdam (1999)

    Book  MATH  Google Scholar 

  71. Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. The Journal of Symbolic Logic 59, 73–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  72. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  73. Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  74. Krajíček, J.: Tautologies from pseudo-random generators. Bulletin of Symbolic Logic 7(2), 197–212 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  75. Krajíček, J.: Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds. The Journal of Symbolic Logic 69(1), 265–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  76. Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54(3), 1063–1079 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  77. Krajíček, J., Pudlák, P.: Some consequences of cryptographical conjectures for \(S^1_2\) and EF. Information and Computation 140(1), 82–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  78. Krajíček, J., Pudlák, P., Woods, A.: Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1), 15–39 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  79. Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  80. Kripke, S.: Semantical Analysis of Intuitionistic Logic, I. In: Crossley, J.N., Dummett, M.A.E. (eds.) Formal Systems and Recursive Functions. Proceedings of the 8th Logic Colloquium, pp. 92–130. North-Holland, Amsterdam (1965)

    Chapter  Google Scholar 

  81. Kutz, O., Mossakowski, T., Lücke, D.: Carnap, Goguen, and the Hyperontologies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica Universalis 4(2), 255–333 (2010); Special Issue on Is Logic Universal?

    Article  MathSciNet  MATH  Google Scholar 

  82. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  83. Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley (1918)

    Google Scholar 

  84. Makinson, D.: General Theory of Cumulative Inference. In: Reinfrank, M., Ginsberg, M.L., de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 1–18. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  85. Meseguer, J., Martí-Oliet, N.: From Abstract Data Types to Logical Frameworks. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 48–80. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  86. Mints, G., Kojevnikov, A.: Intuitionistic Frege systems are polynomially equivalent. Journal of Mathematical Sciences 134(5), 2392–2402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  87. Mossakowski, T., Diaconescu, R., Tarlecki, A.: What is a logic translation? Logica Universalis 3(1), 95–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Mundici, D.: Tautologies with a unique Craig interpolant, uniform vs. nonuniform complexity. Annals of Pure and Applied Logic 27, 265–273 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  89. Orlov, I.E.: The calculus of compatibility of propositions. Mathematics of the USSR, Sbornik 35, 263–286 (1928) (Russian)

    Google Scholar 

  90. Pitassi, T., Santhanam, R.: Effectively polynomial simulations. In: Proc. 1st Innovations in Computer Science (2010)

    Google Scholar 

  91. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  92. Pudlák, P.: The lengths of proofs. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  93. Pudlák, P., Sgall, J.: Algebraic models of computation and interpolation for algebraic proof systems. In: Beame, P.W., Buss, S.R. (eds.) Proof Complexity and Feasible Arithmetic. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 39, pp. 279–296. American Mathematical Society (1998)

    Google Scholar 

  94. Razborov, A.A.: Lower bounds on the monotone complexity of boolean functions. Doklady Akademii Nauk SSSR 282, 1033–1037 (1985), English translation in: Soviet Math. Doklady 31, 354–357

    MathSciNet  MATH  Google Scholar 

  95. Razborov, A.A.: Lower bounds for the polynomial calculus. Computational Complexity 7(4), 291–324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  96. Reckhow, R.A.: On the lengths of proofs in the propositional calculus. Ph.D. thesis, University of Toronto (1976)

    Google Scholar 

  97. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  98. Risch, V., Schwind, C.: Tableaux-based characterization and theorem proving for default logic. Journal of Automated Reasoning 13(2), 223–242 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  99. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  100. Rybakov, V.V.: Admissibility of Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier, Amsterdam (1997)

    Book  MATH  Google Scholar 

  101. Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic 13(4), 417–481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  102. Tarski, A., McKinsey, J.C.C.: Some Theorems about the Sentential Calculi of Lewis and Heyting. Journal of Symbolic Logic 13, 1–15 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  103. ten Cate, B.: Interpolation for extended modal languages. The Journal of Symbolic Logic 70(1), 223–234 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  104. Tiomkin, M.L.: Proving unprovability. In: Proc. 3rd Annual Symposium on Logic in Computer Science, pp. 22–26 (1988)

    Google Scholar 

  105. Tseitin, G.C.: On the complexity of derivations in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

    Google Scholar 

  106. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic 1, 425–467 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  107. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyersdorff, O., Kutz, O. (2012). Proof Complexity of Non-classical Logics. In: Bezhanishvili, N., Goranko, V. (eds) Lectures on Logic and Computation. ESSLLI ESSLLI 2011 2010. Lecture Notes in Computer Science, vol 7388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31485-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31485-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31484-1

  • Online ISBN: 978-3-642-31485-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics