Skip to main content

CO2 Capture, Activation, and Subsequent Conversion with PEG

  • Chapter
  • First Online:
Capture and Utilization of Carbon Dioxide with Polyethylene Glycol

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Although significant advances have been made in the field of CCS, there are still inherent drawbacks. In particular, extensive energy input in desorption and compression process would be a crucial barrier to realize practical CCS. Hence, reducing huge energy requirement could be an essential prerequisite for a breakthrough in absorption techniques. Chemical reactions involving CO2 are commonly carried out at high pressure and using pure CO2, which may not be economically suitable and also pose safety concerns. The challenge is to develop efficient catalysts that are capable of activating CO2 under low pressure (preferably at 1 atm), and thus incorporating CO2 into organic molecules catalytically. In this regard, herein, we have proposed CO2 capture and utilization (CCU) concept as one part of CO2 chemistry. The essence of our strategy is to use the captured CO2, also being considered as an activated form of CO2, as a feedstock, which renders the reaction system suitable for accomplishing chemical transformation of CO2 under low pressure (ideally at 1 atm), and simultaneously getting rid of desorption step in CCU process. Indeed, activation of CO2 through carbamate/alkyl carbonate formation with amines has been reported and detected by in situ FT-IR under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082

    Article  Google Scholar 

  2. McCann N, Maeder M, Attalla M (2008) Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind Eng Chem Res 47(6):2002–2009

    Article  CAS  Google Scholar 

  3. Bates ED, Mayton RD, Ntai I et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Article  CAS  Google Scholar 

  4. Gurkan BE, de la Fuente JC, Mindrup EM et al (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117

    Article  CAS  Google Scholar 

  5. Wang C, Mahurin SM, Luo H et al (2010) Reversible and robust CO2 capture by equimolar task-specific ionic liquid–superbase mixtures. Green Chem 12(5):870–874

    Article  CAS  Google Scholar 

  6. Wang C, Luo H, Luo X et al (2010) Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems. Green Chem 12(11):2019–2023

    Article  CAS  Google Scholar 

  7. Wang C, Luo H, De Jiang et al (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49(34):5978–5981

    CAS  Google Scholar 

  8. Wang C, Luo X, Luo H et al (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Ed 50(21):4918–4922

    Article  CAS  Google Scholar 

  9. Li X, Hou M, Zhang Z et al (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10(8):879–884

    Article  CAS  Google Scholar 

  10. Ochiai B, Yokota K, Fujii A et al (2008) Reversible trap—release of CO2 by polymers bearing DBU and DBN moieties. Macromolecules 41(4):1229–1236

    Article  CAS  Google Scholar 

  11. MacDowell N, Florin N, Buchard A et al (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669

    Article  CAS  Google Scholar 

  12. Goeppert A, Meth S, Prakash GKS et al (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ Sci 3(12):1949–1960

    Article  CAS  Google Scholar 

  13. Wang Q, Luo J, Zhong Z et al (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4(1):42–55

    Article  CAS  Google Scholar 

  14. Aschenbrenner O, Styring P (2010) Comparative study of solvent properties for carbon dioxide absorption. Energy Environ Sci 3(8):1106–1113

    Article  CAS  Google Scholar 

  15. Jessop PG, Heldebrant DJ, Li X et al (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436(7054):1102

    Article  CAS  Google Scholar 

  16. Heldebrant DJ, Jessop PG, Thomas CA et al (2005) The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J Org Chem 70(13):5335–5338

    Article  CAS  Google Scholar 

  17. Heldebrant DJ, Yonker CR, Jessop PG et al (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1(4):487–493

    CAS  Google Scholar 

  18. Huang Q, Li Y, Jin X et al (2011) Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids. Energy Environ Sci 4(6):2125–2133

    Article  CAS  Google Scholar 

  19. Beckman EJ, Munshi P (2011) Ambient carboxylation on a supported reversible CO2 carrier: ketone to [beta]-keto ester. Green Chem 13(2):376–383

    Article  CAS  Google Scholar 

  20. Barzagli F, Mani F, Peruzzini M (2011) From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem 13(5):1267–1274

    Article  CAS  Google Scholar 

  21. Yang Z-Z, He L-N, Zhao Y-N et al (2011) CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ Sci 4(10):3971–3975

    Article  CAS  Google Scholar 

  22. Yang Z-Z, Zhao Y-N, He L-N (2011) CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv 1(4):545–567

    Article  CAS  Google Scholar 

  23. Munshi P, Heldebrant DJ, McKoon EP et al (2003) Formanilide and carbanilide from aniline and carbon dioxide. Tetrahedron Lett 44(13):2725–2727

    Article  CAS  Google Scholar 

  24. Peterson SL, Stucka SM, Dinsmore CJ (2010) Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions. Org Lett 12(6):1340–1343

    Article  CAS  Google Scholar 

  25. Tai C-C, Huck MJ, McKoon EP et al (2002) Low-temperature synthesis of tetraalkylureas from secondary amines and carbon dioxide. J Org Chem 67(25):9070–9072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Nian He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Yang, ZZ., Song, QW., He, LN. (2012). CO2 Capture, Activation, and Subsequent Conversion with PEG. In: Capture and Utilization of Carbon Dioxide with Polyethylene Glycol. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31268-7_6

Download citation

Publish with us

Policies and ethics