Skip to main content

Approximation Algorithms and Hardness Results for Shortest Path Based Graph Orientations

  • Conference paper
Combinatorial Pattern Matching (CPM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7354))

Included in the following conference series:

Abstract

The graph orientation problem calls for orienting the edges of an undirected graph so as to maximize the number of pre-specified source-target vertex pairs that admit a directed path from the source to the target. Most algorithmic approaches to this problem share a common preprocessing step, in which the input graph is reduced to a tree by repeatedly contracting its cycles. While this reduction is valid from an algorithmic perspective, the assignment of directions to the edges of the contracted cycles becomes arbitrary, and the connecting source-target paths may be arbitrarily long. In the context of biological networks, the connection of vertex pairs via shortest paths is highly motivated, leading to the following variant: Given an undirected graph and a collection of source-target vertex pairs, assign directions to the edges so as to maximize the number of pairs that are connected by a shortest (in the original graph) directed path. Here we study this variant, provide strong inapproximability results for it and propose an approximation algorithm for the problem, as well as for relaxations of it where the connecting paths need only be approximately shortest.

Due to space limitations, some proofs are omitted from this extended abstract. These will appear in the full version of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Bartal, Y., Neiman, O.: Nearly tight low stretch spanning trees. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 781–790 (2008)

    Google Scholar 

  2. Alon, N., Karp, R.M., Peleg, D., West, D.B.: A graph-theoretic game and its application to the k-server problem. SIAM Journal on Computing 24(1), 78–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elberfeld, M., Segev, D., Davidson, C.R., Silverbush, D., Sharan, R.: Approximation Algorithms for Orienting Mixed Graphs. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 416–428. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch spanning trees. SIAM Journal on Computing 38(2), 608–628 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fields, S.: High-throughput two-hybrid analysis. The promise and the peril. The FEBS Journal 272(21), 5391–5399 (2005)

    Article  Google Scholar 

  6. Gamzu, I., Segev, D., Sharan, R.: Improved Orientations of Physical Networks. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Gavin, A.-C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  8. Gitter, A., Klein-Seetharaman, J., Gupta, A., Bar-Joseph, Z.: Discovering pathways by orienting edges in protein interaction networks. Nucleic Acids Research 39(4), e22 (2011)

    Google Scholar 

  9. Håstad, J.: Clique is hard to approximate within \(n^{1-\text{epsilon}}\). In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 627–636 (1996)

    Google Scholar 

  10. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An Algorithm for Orienting Graphs Based on Cause-Effect Pairs and Its Applications to Orienting Protein Networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 222–232. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Silverbush, D., Elberfeld, M., Sharan, R.: Optimally Orienting Physical Networks. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 424–436. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J., Assmus, H.E., Andrade-Navarro, M.A., Wanker, E.E.: A directed protein interaction network for investigating intracellular signal transduction. Science Signaling 4(189), rs8 (2011)

    Google Scholar 

  13. Yeang, C.-H., Ideker, T., Jaakkola, T.: Physical network models. Journal of Computational Biology 11(2/3), 243–262 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blokh, D., Segev, D., Sharan, R. (2012). Approximation Algorithms and Hardness Results for Shortest Path Based Graph Orientations. In: Kärkkäinen, J., Stoye, J. (eds) Combinatorial Pattern Matching. CPM 2012. Lecture Notes in Computer Science, vol 7354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31265-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31265-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31264-9

  • Online ISBN: 978-3-642-31265-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics