Skip to main content

Part of the book series: Springer Finance ((FINANCE))

Abstract

Stock price models with stochastic volatility have been developed in the last decades to improve the performance of the celebrated Black-Scholes model. The volatility of the stock in such a model is described by a nonnegative stochastic process. For instance, in the Hull-White model, a geometric Brownian motion plays the role of stochastic volatility, in the Stein-Stein model, the volatility is represented by an Ornstein-Uhlenbeck process, or by the absolute value of this process, while in the Heston model, the volatility process is the square root of a CIR-process. Chapter 2 focuses on stochastic volatility models. In addition, it presents Girsanov’s theorem, risk-neutral measures, and market prices of risk. It is explained in Chap. 2 how to use Girsanov’s theorem to find risk-neutral measures in uncorrelated stochastic volatility models, and how to overcome complications, arising in the case of a non-zero correlation between the stock price and the volatility. The chapter presents results of C. Sin, concerning risk-neutral measures in the correlated Hull-White model. Sin’s results show that the existence of such measures is determined by the possibility of explosions in finite time for solutions of certain auxiliary stochastic differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I. A. (Eds.), Handbook of Mathematical Functions, Applied Mathematics Series 55, National Bureau of Standards, Washington, 1972.

    MATH  Google Scholar 

  2. Ball, C. A., Roma, A., Stochastic volatility option pricing, Journal of Financial and Quantitative Analysis 29 (1994), pp. 589–607.

    Article  Google Scholar 

  3. Barndorff-Nielsen, O. E., Nicolato, E., Shephard, N., Some recent developments in stochastic volatility modelling, Quantitative Finance 2 (2002), pp. 11–23.

    Article  MathSciNet  Google Scholar 

  4. Benhamou, E., Gobet, E., Miri, M., Time dependent Heston model, SIAM Journal on Financial Mathematics 1 (2010), pp. 289–325.

    Article  MathSciNet  MATH  Google Scholar 

  5. Björk, T., Arbitrage Theory in Continuous Time, Oxford University Press, Oxford, 2004.

    Book  MATH  Google Scholar 

  6. Black, F., Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy 81 (1973), pp. 635–654.

    Article  Google Scholar 

  7. Bollerslev, T., Litvinova, J., Tauchen, G., Leverage and volatility feedback effects in high-frequency data, Journal of Financial Econometrics 4 (2006), pp. 353–384.

    Article  Google Scholar 

  8. Cherny, A. S., Engelbert, H.-J., Singular Stochastic Differential Equations, Lecture Notes in Mathematics 1858, Springer, Berlin, 2005.

    MATH  Google Scholar 

  9. Cuciero, C., Filipović, D., Teichmann, J., Affine models, in: Encyclopedia of Mathematical Finance, pp. 16–20, Wiley, New York, 2010.

    Google Scholar 

  10. Delbaen, F., Schachermayer, W., The Mathematics of Arbitrage, Springer, Berlin, 2006.

    MATH  Google Scholar 

  11. Duffie, D., Pan, J., Singleton, K., Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68 (2000), pp. 1343–1376.

    Article  MathSciNet  MATH  Google Scholar 

  12. Duffie, D., Filipović, D., Schachermayer, W., Affine processes and applications in finance, The Annals of Applied Probability 13 (2003), pp. 984–1053.

    Article  MathSciNet  MATH  Google Scholar 

  13. Figlewski, S., Wang, X., Is the “Leverage effect’’’ a Leverage effect? Working paper, 2001.

    Google Scholar 

  14. Filipović, D., Mayerhofer, E., Affine diffusion processes: theory and applications, Radon Series on Computational and Applied Mathematics 8 (2009), pp. 1–40.

    Article  Google Scholar 

  15. Fouque, J.-P., Papanicolaou, G., Sircar, R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  16. Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K., Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives, Cambridge University Press, Cambridge, 2011.

    Book  MATH  Google Scholar 

  17. Ghysels, E., Harvey, A., Renault, E., Stochastic volatility, in: Maddala, S. G. (Ed.), Handbook of Statistics, Statistical Methods in Finance 14, North Holland, Amsterdam, 1996.

    Google Scholar 

  18. Gobet, E., Asymptotic methods in option pricing, Journées George Papanicolaou, Université Paris Diderot, 1er décembre 2011 (based on a joint work with M. Miri).

    Google Scholar 

  19. Göing-Jaeschke, A., Yor, M., A survey and some generalizations of Bessel processes, Bernoulli 9 (2003), pp. 313–349.

    Article  MathSciNet  MATH  Google Scholar 

  20. Heston, S. L., A closed-form solution for options with stochastic volatility, with applications to bond and currency options, Review of Financial Studies 6 (1993), pp. 327–343.

    Article  Google Scholar 

  21. Heston, S. L., Loewenstein, M., Willard, G. A., Options and bubbles, Review of Financial Studies 20 (2007), pp. 359–390.

    Article  Google Scholar 

  22. Hobson, D. G., Stochastic volatility, in: Hand, D., Jacka, S. (Eds.), Statistics in Finance, Applications of Statistical Series, Arnold, London, 1998.

    Google Scholar 

  23. Hull, J., White, A., The pricing of options on assets with stochastic volatilities, Journal of Finance 42 (1987), pp. 281–300.

    Article  Google Scholar 

  24. Ikeda, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  25. Jäckel, P., Stochastic volatility models—past, present, and future, presentation at the Quantitative Finance Review conference in November 2003 in London.

    Google Scholar 

  26. Karatzas, I., Shreve, S. E., Brownian Motion and Stochastic Calculus, 2nd ed., Springer, New York, 1991.

    Book  MATH  Google Scholar 

  27. Keller-Ressel, M., Schachermayer, W., Teichmann, J., Affine processes are regular, Probability Theory and Related Fields 151 (2011), pp. 591–611.

    Article  MathSciNet  MATH  Google Scholar 

  28. Keller-Ressel, M., Moment explosions and long-term behavior of affine stochastic volatility models, Mathematical Finance 21 (2011), pp. 73–98.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lamberton, D., Lapeyre, B., Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall/CRC, Boca Raton, 2008.

    MATH  Google Scholar 

  30. Le Gall, G. F., Applications du temps local aux equations differentielles stochastiques unidimensionnelles, in: Lecture Notes in Mathematics 983, pp. 15–31, Springer, Berlin, 1983.

    Google Scholar 

  31. Lewis, A. L., Option Valuation Under Stochastic Volatility: with Mathematica Code, Finance Press, Newport Beach, 2000.

    MATH  Google Scholar 

  32. Lipton, A., Mathematical Methods for Foreign Exchange: a Financial Engineer’s Approach, World Scientific, River Edge, 2001.

    MATH  Google Scholar 

  33. Lipton, A., Sepp, A., Stochastic volatility models and Kelvin waves, Journal of Physics A: Mathematical and Theoretical 41, (2008), 344012.

    Article  MathSciNet  Google Scholar 

  34. Marcus, M. B., Rosen, J., Markov Processes, Gaussian Processes, and Local Times, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  35. Musiela, M., Rutkowski, M., Martingale Methods in Financial Modelling, Springer, Berlin, 2005.

    MATH  Google Scholar 

  36. Osborne, M. F. M., Brownian motion in the stock market, Operations Research 7 (1959), pp. 145–173.

    Article  MathSciNet  Google Scholar 

  37. Protter, P. E., Stochastic Integration and Differential Equations, 2nd ed., Springer, Berlin, 2004.

    MATH  Google Scholar 

  38. Rasmussen, H., Wilmott, P., Asymptotic analysis of stochastic volatility models, in: Wilmott, P., Rasmussen, H. (Eds.), New Directions in Mathematical Finance, Wiley, Chichester, 2002.

    Google Scholar 

  39. Revuz, D., Yor, M., Continuous Martingales and Brownian Motion, Springer, Berlin, 2004.

    Google Scholar 

  40. Riccardi, L. M., Sacerdote, L., On the probability densities of the Ornstein–Uhlenbeck process with a reflecting boundary, Journal of Applied Probability 24 (1987), pp. 355–369.

    Article  MathSciNet  Google Scholar 

  41. Samuelson, P. A., Modern finance theory within one lifetime, in: Geman, H., Madan, D., Pliska, S. R., Vorst, T. (Eds.), Mathematical Finance—Bachelier Congress 2000, Selected Papers from the First World Congress of the Bachelier Finance Society, pp. 41–45, Springer, Berlin, 2002.

    Google Scholar 

  42. Scott, L. O., Option pricing when the variance changes randomly: theory, estimation and an application, Journal of Financial and Quantitative Analysis 22 (1987), pp. 419–438.

    Article  Google Scholar 

  43. Shephard, N. (Ed.), Stochastic Volatility: Selected Readings, Oxford University Press, Oxford, 2005.

    MATH  Google Scholar 

  44. Shephard, N., Stochastic volatility, in: Durlauf, S., Blume, L. (Eds.), New Palgrave Dictionary of Economics, 2nd ed., 2006.

    Google Scholar 

  45. Shephard, N., Andersen, T. G., Stochastic volatility: origins and overview, in: Andersen, T. G., Davis, R. A., Kreiss, J.-P., Mikosch, T. (Eds.), Handbook of Financial Time Series, Part II, pp. 233–254, Springer, Berlin, 2009.

    Chapter  Google Scholar 

  46. Sin, C. A., Complications with stochastic volatility models, Advances in Applied Probability 30 (1998), pp. 256–268.

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, E. M., Stein, J., Stock price distributions with stochastic volatility: an analytic approach, Review of Financial Studies 4 (1991), pp. 727–752.

    Article  Google Scholar 

  48. Tauchen, G., Recent developments in stochastic volatility: statistical modelling and general equilibrium analysis, Working paper, 2004.

    Google Scholar 

  49. Wiggins, J., Option values under stochastic volatility, Journal of Financial Economics 19 (1987), pp. 351–372.

    Article  Google Scholar 

  50. Wong, B., Heyde, C. C., On the martingale property of stochastic exponentials, Journal of Applied Probability 41 (2004), pp. 654–664.

    Article  MathSciNet  MATH  Google Scholar 

  51. Wong, B., Heyde, C. C., On changes of measure in stochastic volatility models, Journal of Applied Mathematics and Stochastic Analysis 2006, pp. 1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gulisashvili, A. (2012). Stock Price Models with Stochastic Volatility. In: Analytically Tractable Stochastic Stock Price Models. Springer Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31214-4_2

Download citation

Publish with us

Policies and ethics