Skip to main content

Kinetic Pie Delaunay Graph and Its Applications

  • Conference paper
Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

Abstract

We construct a new proximity graph, called the Pie Delaunay graph, on a set of n points which is a super graph of Yao graph and Euclidean minimum spanning tree (EMST). We efficiently maintain the Pie Delaunay graph where the points are moving in the plane. We use the kinetic Pie Delaunay graph to create a kinetic data structure (KDS) for maintenance of the Yao graph and the EMST on a set of n moving points in 2-dimensional space. Assuming x and y coordinates of the points are defined by algebraic functions of at most degree s, the structure uses O(n) space, O(nlogn) preprocessing time, and processes O(n 2 λ 2s + 2(n)β s + 2(n)) events for the Yao graph and O(n 2 λ 2s + 2(n)) events for the EMST, each in O(log2 n) time. Here, λ s (n) =  s (n) is the maximum length of Davenport-Schinzel sequences of order s on n symbols. Our KDS processes nearly cubic events for the EMST which improves the previous bound O(n 4) by Rahmati et al. [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahmati, Z., Zarei, A.: Kinetic Euclidean Minimum Spanning Tree in the Plane. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 261–274. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Abam, M.A., de Berg, M., Gudmundsson, J.: A simple and efficient kinetic spanner. Comput. Geom. Theory Appl. 43, 251–256 (2010)

    Article  MATH  Google Scholar 

  3. Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for convex hulls and upper envelopes. Comput. Geom. Theory Appl. 36(2), 144–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1997, pp. 747–756. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Google Scholar 

  5. Kaplan, H., Rubin, N., Sharir, M.: A kinetic triangulation scheme for moving points in the plane. Comput. Geom. Theory Appl. 44(4), 191–205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 11(4), 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guibas, L.J., Mitchell, J.S.B.: Voronoi Diagrams of Moving Points in the Plane. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 113–125. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  8. Fu, J.J., Lee, R.C.T.: Minimum spanning trees of moving points in the plane. IEEE Trans. Comput. 40(1), 113–118 (1991)

    Article  MathSciNet  Google Scholar 

  9. Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic minimum spanning trees. In: FOCS, pp. 596–605. IEEE Computer Society (1998)

    Google Scholar 

  10. Basch, J.: Kinetic data structures. PhD Thesis, Stanford University (1999)

    Google Scholar 

  11. Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: Proceedings of the Thirteenth Annual Symposium on Computational Geometry, SCG 1997, pp. 344–351. ACM, New York (1997)

    Chapter  Google Scholar 

  12. Chew, L.P., Dyrsdale III, R.L.S.: Voronoi diagrams based on convex distance functions. In: Proceedings of the First Annual Symposium on Computational Geometry, SCG 1985, pp. 235–244. ACM, New York (1985)

    Chapter  Google Scholar 

  13. Agarwal, K.P., Sharir, M.: Davenport–schinzel sequences and their geometric applications. Technical report, Durham, NC, USA (1995)

    Google Scholar 

  14. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society, 7 (1956)

    Google Scholar 

  15. Prim, R.C.: Shortest connection networks and some generalizations. Bell Systems Technical Journal, 1389–1401 (November 1957)

    Google Scholar 

  16. Katoh, N., Tokuyama, T., Iwano, K.: On minimum and maximum spanning trees of linearly moving points. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, SFCS 1992, pp. 396–405. IEEE Computer Society, Washington, DC (1992)

    Google Scholar 

  17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chan, T.M.: On levels in arrangements of curves. Discrete and Computational Geometry 29, 375–393 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marcus, A., Tardos, G.: Intersection reverse sequences and geometric applications. J. Comb. Theory Ser. A 113(4), 675–691 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abam, M.A., Rahmati, Z., Zarei, A. (2012). Kinetic Pie Delaunay Graph and Its Applications. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics