Skip to main content

Annotating Simplices with a Homology Basis and Its Applications

  • Conference paper
Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

Abstract

Let \({\cal K}\) be a simplicial complex and g the rank of its p-th homology group \({\sf H}_{p}({\cal K})\) defined with ℤ2 coefficients. We show that we can compute a basis H of \({\sf H}_{p}({\cal K})\) and annotate each p-simplex of \({\cal K}\) with a binary vector of length g with the following property: the annotations, summed over all p-simplices in any p-cycle z, provide the coordinate vector of the homology class [z] in the basis H. The basis and the annotations for all simplices can be computed in O(n ω) time, where n is the size of \({\cal K}\) and ω < 2.376 is a quantity so that two n×n matrices can be multiplied in O(n ω) time. The precomputed annotations permit answering queries about the independence or the triviality of p-cycles efficiently.

Using annotations of edges in 2-complexes, we derive better algorithms for computing optimal basis and optimal homologous cycles in 1 - dimensional homology. Specifically, for computing an optimal basis of \({\sf H}_{1}({\cal K})\), we improve the previously known time complexity from O(n 4) to O(n ω + n 2 g ω − 1). Here n denotes the size of the 2-skeleton of \({\cal K}\) and g the rank of \({\sf H}_{1}({\cal K})\). Computing an optimal cycle homologous to a given 1-cycle is NP-hard even for surfaces and an algorithm taking 2O(g) nlogn time is known for surfaces. We extend this algorithm to work with arbitrary 2-complexes in O(n ω) + 2O(g) n 2logn time using annotations.

Research was partially supported by the Slovenian Research Agency, program P1-0297 and NSF grant CCF 1064416.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabello, S., Colin de Verdière, É., Lazarus, F.: Finding cycles with topological properties in embedded graphs. SIAM J. Disc. Math. 25(4), 1600–1614 (2011)

    Article  MATH  Google Scholar 

  2. Chambers, E., Erickson, J., Nayyeri, A.: Minimum cuts and shortest homologous cycles. In: Proc. ACM Symp. on Computational Geometry (SOCG), pp. 377–385 (2009)

    Google Scholar 

  3. Chen, C., Freedman, D.: Hardness results for homology localization. Discrete and Computational Geometry 45(3), 425–448 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis from point data. In: Proc. ACM Symp. on Computational Geometry (SOCG), pp. 166–175 (2010)

    Google Scholar 

  5. Erickson, J., Nayyeri, A.: Minimum cuts and shortest non-separating cycles via homology covers. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1166–1176 (2011)

    Google Scholar 

  6. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1038–1046 (2005)

    Google Scholar 

  7. Dey, T.K., Hirani, A., Krishnamoorthy, B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput. 40, 1026–1044 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Freedman, D.: Quantifying homology classes. In: Proc. Symp. on Theoretical Aspects of Computer Science (STACS), pp. 169–180 (2008)

    Google Scholar 

  10. Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved algorithms for min cut and max flow in undirected planar graphs. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 313–322 (2011)

    Google Scholar 

  11. Bunch, J., Hopcroft, J.: Triangular factorization and inversion by fast matrix multiplication. Math. Comp. 28, 231–236 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ibarra, O., Moran, S., Hui, R.: A generalization of the fast LUP matrix decomposition algorithm and applications. Journal of Algorithms 3(1), 45–56 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jeannerod, C.: LSP matrix decomposition revisited (2006), http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-28.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y. (2012). Annotating Simplices with a Homology Basis and Its Applications. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics