Skip to main content

Lipids as Biological Materials for Nanoparticulate Delivery

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Lipid-based drug delivery has been an ever-growing field of research these last few decades right from its inception as fat emulsion(s) for parenteral nutrition in the past to the present day targeted delivery of drugs. Lipid-based nanosystems constitute liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and self-nanoemulsifying drug delivery systems (SNEDDS). Use of lipids for improving the bioavailability and solubility of drugs and advantages like biocompatibility, lesser susceptibility to erosion phenomena, and slower water uptake makes them the ideal choice for delivering therapeutics in a controlled and targeted manner. Present chapter comprehensively covers the available lipids and excipients including emulsifiers used in the preparation of these lipid nanoparticle their method of preparation and factors affecting their performance characteristics. Also included are the major characterization parameters, pharmacokinetic behavior, and ways to improve bioperformance and targetability of these nanomaterials. Safety issues and specialized application in gene delivery are also touched upon in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desai PP, Date AA, Patravale VB (2012) Overcoming poor oral bioavailability using nanoparticle formulations: opportunities and limitations. Drug Discov Today Technol 9:e87–e95

    Google Scholar 

  2. Bhandari R, Kaur IP (2013) Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 441:202–212

    Google Scholar 

  3. Xue M, Zhao Y, Li X-j, Jiang Z-z, Zhang L, Liu S-h, Li X-m, Zhang L-Y, Yang S-y (2012) Comparison of toxicokinetic and tissue distribution of triptolide-loaded solid lipid nanoparticles vs free triptolide in rats. Eur J Pharm Biopharm 47:713–717

    Google Scholar 

  4. Qi J, Lu Y, Wu W (2012) Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr Drug Metab 13:418–428

    Google Scholar 

  5. Singh H, Bhandari R, Kaur IP (2013) Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH. Int J Pharm 446:106–111

    Google Scholar 

  6. Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, Mehta A, Vyas SP (2009) Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 5:184–191

    Google Scholar 

  7. Sanjula B, Shah FM, Javed A, Alka A (2009) Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target 17:249–256

    Google Scholar 

  8. Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119

    Google Scholar 

  9. Tabatt K, Kneuer C, Sameti M, Olbrich C, Müller RH, Lehr CM, Bakowsky U (2004) Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J Control Release 97:321–332

    Google Scholar 

  10. Trevaskis NL, Charman WN, Porter CJ (2008) Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 60:702–716

    Google Scholar 

  11. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, Mumper RJ (2009) Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-Glycoprotein and depleting ATP. Cancer Res 69:3918–3926

    Google Scholar 

  12. Chabra S, Ranjan M, Bhandari R, Kaur T, Aggrawal M, Puri V, Mahajan N, Kaur IP, Puri S, Sobti RC (2011) Solid lipid nanoparticles regulate functional assortment of mouse mesenchymal stem cells. J Stem Cells Regen Med 7:75–79

    Google Scholar 

  13. Hu C-MJ, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83:1104–1111

    Google Scholar 

  14. Lucks JS, Müller RH, Konig B (1992) Solid lipid nanoparticles (SLN) – an alternative parenteral drug carrier system. Eur J Pharm Biopharm 38:33S

    Google Scholar 

  15. Kang KC, Lee CI, Pyo HB, Jeong NH (2005) Preparation and characterization of nano-liposomes using phosphatidylcholine. J Ind Eng Chem 11:847–851

    Google Scholar 

  16. Schwarz C, Mehnert W, Lucks JS, Muller RH (1994) Solid lipid nanoparticles for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30:83–96

    Google Scholar 

  17. Lee GS, Lee DH, Kang KC, Lee CI, Pyo HB, Choi TB (2007) Preparation and characterization of bis-ethylhexyloxyphenolmethoxyphenyltriazine (BEMT) loaded solid lipid nano-particles (SLN). J Ind Eng Chem 13:1180–1187

    Google Scholar 

  18. Yang HJ, Cho WG, Park SN (2009) Stability of oil-in-water emulsions prepared using the phase inversion composition method. J Ind Eng Chem 15:331

    Google Scholar 

  19. Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109

    Google Scholar 

  20. Jenning V, Lippacher A, Gohla SH (2002) Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul 19:1–10

    Google Scholar 

  21. Cavalli R, Caputo O, Gasco MR (2000) Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Biopharm 10:305–330

    Google Scholar 

  22. Almeida AJ, Runge S, Miiller RH (1997) Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 149:255–265

    Google Scholar 

  23. Rawat M, Manju S, Singh D, Saraf S (2008) Lipid carriers: a versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi 128:269–280

    Google Scholar 

  24. Westesen K, Bunjas H, Koch MHJ (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48:223–236

    Google Scholar 

  25. Hu L, Tang X, Cui F (2004) Solid lipid Nanoparticles. (SLNs) to improve oral bioavailability of poorly soluble drug. J Pharm Pharmacol 56:1527–1535

    Google Scholar 

  26. Lim S, Lee M, Kim C (2004) Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J Control Release 100:53–61

    Google Scholar 

  27. Kakkar V, Singh S, Singla D, Kaur IP (2011) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 55:495–503

    Google Scholar 

  28. Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    Google Scholar 

  29. Bhandari R, Kaur IP (2013) A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Curr Nanosci 9:211–220

    Google Scholar 

  30. Lim SB, Banerjee A, Onyukel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163:34–45

    Google Scholar 

  31. Ghadiri M, Fatemi S, Vatanara A, Doroud D, Najafabadi AR, Darabi M, Rahimi AA (2012) Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm 424:128–137

    Google Scholar 

  32. Radtke M, Souto EB, Muller R (2005) Nanostructured lipid carriers: a novel generation of solid lipid drug carriers. Pharm Technol Eur 17:45–50

    Google Scholar 

  33. Muchow M, Maincent P, Müller RH (2008) Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for Oral Drug Delivery. Drug Dev Ind Pharm 34:1394–1405

    Google Scholar 

  34. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J (2012) Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 20:813–830

    Google Scholar 

  35. Shidhaye SS, Vaidya R, Sutar S, Patwardhan A, Kadam VJ (2008) Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Curr Drug Deliv 5:324–331

    Google Scholar 

  36. Kuo YC, Chung JF (2011) Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf B Biointerfaces 83:299–306

    Google Scholar 

  37. Villar AMS, Naveros BC, Campmany ACC, Trenchs MAZ, Rocabert CB, Bellowa LH (2012) Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int J Pharm 431:161–175

    Google Scholar 

  38. Constantinides PP (1995) Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res 12:1561–1572

    Google Scholar 

  39. Zhao Y, Wang C, Chow AHL, Ren K, Gong T, Zhang Z, Zheng Y (2010) Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: formulation and bioavailability studies. Int J Pharm 383:170–177

    Google Scholar 

  40. Wang Z, Sun J, Wang Y, Liu X, Liu Y, Fu Q, Meng P, He Z (2010) Solid self-emulsifying nitrendipine pellets: preparation and in vitro/in vivo evaluation. Int J Pharm 383:1–6

    Google Scholar 

  41. Basalious EB, Shawky N, Badr-Eldin SM (2010) SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm 391:203–211

    Google Scholar 

  42. Larsen AT, Ogbonna A, Abu-Rmaileh R, Abrahamsson B, Østergaard J, Müllertz A (2012) SNEDDS containing poorly water soluble cinnarizine; development and in vitro characterization of dispersion, digestion and solubilization. Pharmaceutics 4:641–665

    Google Scholar 

  43. Shah NH, Carvajal MT, Patel CI, Infield MH, Malick AW (1994) Self-emulsifying drug delivery systems (SEDDS) with polyglycolized glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm 106:15–23

    Google Scholar 

  44. Pouton CW (1985) Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm 27:335–348

    Google Scholar 

  45. Gershanik T, Benita S (2000) Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 50:179–188

    Google Scholar 

  46. Kommuru TR, Gurley B, Khan MA, Reddy IK (2001) Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212:233–246

    Google Scholar 

  47. Chakraborty S, Shukla D, Mishra B, Singh S (2009) Lipid-an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 73:1–15

    Google Scholar 

  48. Patil PR, Biradar SV, Paradkar AR (2009) Extended release felodipine self-nanoemulsifying system. AAPS PharmSciTech 10:515–523

    Google Scholar 

  49. Nazzal S, Khan MA (2006) Controlled release of a self-emulsifying formulation from a tablet dosage form: stability assessment and optimization of some processing parameters. Int J Pharm 315:110–121

    Google Scholar 

  50. Shanmugam S, Baskaran R, Balakrishnan P, Thapa P, Yong CS, Yoo BK (2011) Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharm Biopharm 79:250–257

    Google Scholar 

  51. Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA (2002) Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm 235:247–265

    Google Scholar 

  52. Nielsen FS, Gibault E, Ljusberg-Wahren H, Arleth L, Pedersen JS, Müllertz A (2007) Characterization of prototype self-nanoemulsifying formulations of lipophilic compounds. J Pharm Sci 96:876–892

    Google Scholar 

  53. Nepal PR, Han HK, Choi HK (2010) Preparation and in vitro-in vivo evaluation of Witepsol H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q(10). Eur J Pharm Sci 39:224–232

    Google Scholar 

  54. Nielsen FS, Petersen KB, Müllertz A (2008) Bioavailability of probucol from lipid and surfactant based formulations in minipigs: influence of droplet size and dietary state. Eur J Pharm Biopharm 69:553–562

    Google Scholar 

  55. Date AA, Desai N, Dixit R, Nagarsenker M (2010) Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond) 5:1595–1616

    Google Scholar 

  56. Grubber SM (1987) Liposomes: from biophysics to therapeutics. Marc Ostro (Ed.). Marcel Dekker: New York

    Google Scholar 

  57. Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4:297–305

    Google Scholar 

  58. Johnston APR, Such GK, Ng SL, Caruso F (2011) Challenges facing colloidal delivery systems: from synthesis to the clinic. Curr Opin Colloid Interface Sci 16:171–181

    Google Scholar 

  59. Lee JS, Ankone M, Pieters E, Schiffelers RM, Hennink WE, Feijen J (2011) Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J Control Release 155:282–288

    Google Scholar 

  60. Crommelin DJA, Daemen T, Scherphof GL, Vingerhoeds MH, Heeremans JLM, Kluft C, Storm G (1997) Liposomes: vehicles for the targeted and controlled delivery of peptides and proteins. J Control Release 46:165–175

    Google Scholar 

  61. Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 24:337–344

    Google Scholar 

  62. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Google Scholar 

  63. Aggarwal D, Kaur IP (2005) Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm 290:155–159

    Google Scholar 

  64. Cortesi R, Esposito E, Luca G, Nastruzzi C (2002) Production of lipospheres as carriers for bioactive compounds. Biomaterials 23:2283–2294

    Google Scholar 

  65. Olbrich C, Gessner A, Schröder W, Kayser O, Müller RH (2004) Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. J Control Release 96:425–435

    Google Scholar 

  66. Jie L, Tao G, Changguang W, Zhirong Z, Zhirong Z (2007) Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm 340:153–162

    Google Scholar 

  67. Morel S, Ugazio E, Cavalli R, Gasco MR (1996) Thymopentin in solid lipid nanoparticles. Int J Pharm 132:259–261

    Google Scholar 

  68. Reithmeier H, Herrmann J, Gopferich A (2001) Lipid microparticles as a parenteral controlled release device for peptides. J Control Release 73:339–350

    Google Scholar 

  69. Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S (2010) Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: zidovudine. Chem Pharm Bull 58:650–655

    Google Scholar 

  70. Nair R, Priya KV, Kumar KS, Badivaddin TM, Sevukarajan M (2011) Formulation and evaluation of solid lipid nanoparticles of water soluble drug: isoniazid. Int J Pharm Pharm Sci 3:1256–1264

    Google Scholar 

  71. Stancampiano AHS, Puglisi G, Pignatello R (2008) Effect of lipophilicity of dispersed drugs on the physicochemical and technological properties of solid lipid nanoparticles. Open Drug Deliv J 2:26–32

    Google Scholar 

  72. Singh S, Dobhal AK, Jain A, Pandit PK, Chakarborty S (2010) Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: zidovudine. Chem Pharm Bull (Tokyo) 58:650–655

    Google Scholar 

  73. Kuo YC, Liang CT (2011) Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids Surf B Biointerfaces 85:131–137

    Google Scholar 

  74. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328:191–195

    Google Scholar 

  75. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Google Scholar 

  76. Ugazio E, Marengo E, Pellizzaro C, Coradini D, Peira E, Daidone MG, Gasco MR (2001) The effect of formulation and concentration of cholesteryl butyrate solid lipid nanospheres (SLN) on NIH-H460 cell proliferation. Eur J Pharm Biopharm 52:197–202

    Google Scholar 

  77. Mahon E, Salvati A, Baldelli BF, Lynch I, Dawson KA (2012) Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release 161:164–174

    Google Scholar 

  78. Martins S, Tho I, Ferreira DC, Souto EB, Brandl M (2011) Physicochemical properties of lipid nanoparticles: effect of lipid and surfactant composition. Drug Dev Ind Pharm 37:815–824

    Google Scholar 

  79. Risovic V, Boyd M, Choo E, Wasan KM (2003) Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob Agents Chemother 47:3339–3342

    Google Scholar 

  80. Muhlen AZ, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles for controlled drug delivery – drug release and release mechanism. Eur J Pharm Biopharm 45:149–155

    Google Scholar 

  81. Bhandari R, Kaur IP (2012) A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Curr Nanosci 9:211–220

    Google Scholar 

  82. Vitorino C, Carvalho FA, Almeida AJ, Sousa JJ, Pais AACC (2011) The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf B Biointerfaces 84:117–130

    Google Scholar 

  83. Chen LT, Weiss L (1973) The role of the sinus wall in the passage of erythrocytes through the spleen. Blood 41:529–537

    Google Scholar 

  84. Moghimi SM, Porter CJH, Muir IS, Illum L, Davis SS (1991) Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 177:861–866

    Google Scholar 

  85. Drenckhahn D, Wagner J (1986) Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix and contradictibility. J Cell Biol 102:1738–1747

    Google Scholar 

  86. Groom AC (1987) Microcirculation of the spleen: new concepts. Microvasc Res 34:269–289

    Google Scholar 

  87. Moghimi SM, Hunter C, Murray JC (2001) Long-circulating and target-specific nanoparticles:theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  88. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–11618

    Google Scholar 

  89. Qiu Y, Liu Y, Wang LM, Xu LG, Bai R (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    Google Scholar 

  90. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Google Scholar 

  91. Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 102:9469–9474

    Google Scholar 

  92. Yuan HY, Li J, Bao G, Zhang SL (2010) Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett 105:1381011–1381014

    Google Scholar 

  93. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Google Scholar 

  94. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    Google Scholar 

  95. Jin H, Heller DA, Sharma R, Strano MS (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158

    Google Scholar 

  96. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811:637–647

    Google Scholar 

  97. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Google Scholar 

  98. Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ (2004) Comparison of cell uptake, biodistribution and tumor retention of folate coated and PEG coated gadolinium nanoparticles in tumor bearing mice. J Control Release 95:613–626

    Google Scholar 

  99. Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain. Comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    Google Scholar 

  100. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Google Scholar 

  101. Panyam J, Labhasetwar V (2003) Dynamics of endocytosis and exocytosis of poly(D, L-Lactide-co-Glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20:212–220

    Google Scholar 

  102. Kakkar V, Mishra AK, Chuttani K, Chopra K, Kaur IP (2011) Delivery of sesamol-loaded solid lipid nanoparticles to the brain for menopause-related emotional and cognitive central nervous system derangements. Rejuvenation Res 14:597–604

    Google Scholar 

  103. Ambruosi A, Gelperina S, Khalansky A, Tanski S, Theisen A, Kreuter J (2006) Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effects of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul 23:582–592

    Google Scholar 

  104. Iea B (2004) Negative preclinical results with stealth1 nanospheres encapsulated doxorubicin in an orthotopic murine brain tumor model. J Control Release 100:29–40

    Google Scholar 

  105. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328

    Google Scholar 

  106. Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients, 6th edn. Pharmaceutical Press, Greyslake

    Google Scholar 

  107. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Büchel C, Briesen HV, Kreuter J (2009) Albumin nanoparticles targeted with apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 137:78–86

    Google Scholar 

  108. Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ blood-brain barrier transport of nanoparticles. Pharm Res 20:1772–1778

    Google Scholar 

  109. www.mfc.co.jp downloaded from http://www.mfc.co.jp/english/productinfor.htm. Accessed 4 Apr 2013

  110. Pasquali RC, Bregni C, Taurozzi MP (2009) New values of the required hydrophilic-lipophilic balance for oil in water emulsions of solid fatty acids and alcohols obtained from solubility parameter and dielectric constant values. J Dispers Sci Technol 30:328–331

    Google Scholar 

  111. HSDB (2013) Downloaded from http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/∼10IcEv:1. Accessed 23 Feb 2013

  112. Michael Ash IA (2007) Handbook of fillers, extenders, and diluents, 2nd edn. Synapse Information Resources, Endicott

    Google Scholar 

  113. Gattefossé (2013) Technical documents accessed from http://www.gattefosse.com/en/document-center/. Accessed 17 Feb 2013

  114. www.sasoltechdata.com. Downloaded from www.sasoltechdata.com/…/Excipients_Pharmaceuticals.pdf. Accessed 9 Apr 2013

  115. www.sasoltechdata.com/…/Excipients_Pharmaceuticals.pdf. Downloaded from www.sasoltechdata.com/…/Excipients_Pharmaceuticals.pdf. Accessed 9 Apr 2013

  116. www.ntp.niehs.nih.gov. Downloaded from http://ntp.niehs.nih.gov/index.cfm?objectid=E8841408-BDB5-82F8-FC7F7D3E0F941C7E. Accessed 2nd Jan 2013

  117. Severino P, Andreani T, SofiaMacedo A, Fangueiro JF, Santana MA, Silva AM, Souto EB (2012) Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv. doi:10.1155/2012/750891

    Google Scholar 

  118. Trotta M, Debernardi F, Caputo O (2003) Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm 257:153–160

    Google Scholar 

  119. www.sigmaaldrich.com. Detergents properties and applications. Downloaded from www.sigmaaldrich.com/img/assets/…/Detergent_Selection_Table.pdf. Accessed 3 Jan 2013

  120. Pedersen N, Hansen S, Heydenreich AV, Kristensen HG, Poulsen HS (2006) Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 62:155–162

    Google Scholar 

  121. Heiati H, Tawashi R, Phillips NC (1998) Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J Microencapsul 15:173–184

    Google Scholar 

  122. Bunjes H, Westesen K, Koch MHJ (1996) Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 129:159–173

    Google Scholar 

  123. Cavalli R, Gasco MR, Morel S (1992) Behaviour of timolol incorporated in lipospheres in the presence of a series of phosphate esters. STP Pharma Sci 2:514–518

    Google Scholar 

  124. Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Google Scholar 

  125. Siekmann B, Westesen K (1992) Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett 1:123–126

    Google Scholar 

  126. Thassu D, Pathak Y, Deleers M (2007) Nanoparticulate drug delivery systems: an overview in nanoparticulate drug delivery systems. Informa Healthcare, New York, pp 1–31

    Google Scholar 

  127. Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Del Rev 56:1257–1272

    Google Scholar 

  128. Sjostrom B, Bergenstahl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions: I: Model studies of the precipitation of cholesteryl acetate. Int J Pharm 88:53–62

    Google Scholar 

  129. Siekmann B, Westesen K (1996) Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur J Pharm Biopharm 43:104–109

    Google Scholar 

  130. Gasco MR (1993) Method for producing solid lipid microspheres having a narrow size distribution. US Patent 5250236

    Google Scholar 

  131. Muller RH (1990) Colloidal carriers for controlled drug delivery and targeting. Verlagsgesellschaft GmbH, Stuttgart

    Google Scholar 

  132. Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR (1997) Sterilization and freeze drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 148:47–54

    Google Scholar 

  133. Gasco MR (1997) Solid lipid nanospheres from warm micro-emulsions. Pharm Technol Eur 9:52–58

    Google Scholar 

  134. Boltri L, Canal T, Esposito PA, Carli F (1993) Evaluation of some critical formulation parameters: lipid nanoparticles. Proc Intern Symp Control Rel Bioact Mater 20:346–347

    Google Scholar 

  135. Kaur IP, Bhandari R (2012) Solid lipid nanoparticles entrapping hydrophilic/amphiphilic drug and a process for preparing the same. PCT application number: PCT/IN2012/000154 dated 5 March 2012

    Google Scholar 

  136. Kaur IP, Bhandari R (2012) Solid lipid nanoparticles entrapping hydrophilic/amphiphilic drug and a process for preparing the same. Indian patent application number: 127/DEL/2012, dated 13 Jan 2012

    Google Scholar 

  137. Kaur IP, Verma MK (2012) Solid nanolipidic particulates of retinoic acid and vitamin D3 with DCGI. Indian patent application number: 79/DEL/2012 dated 9 Jan 2012

    Google Scholar 

  138. Kaur IP, Singh M, Verma MK (2012) Oral nanocolloidal aqueous dispersion (NCD) of streptomycin sulfate. Indian patent application number: 3093/DEL/2012, dated 3 Jan 2012

    Google Scholar 

  139. Kaur IP, Verma MK (2013) A process for preparing solid lipid sustained release nanoparticles for delivery of vitamins. PCT application number: PCT/IB2013/050169, dated 9 Jan 2013

    Google Scholar 

  140. Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76

    Google Scholar 

  141. Kaiser CS, Rompp H, Schmidt PC (2001) Pharmaceutical applications of supercritical carbon dioxide. Pharmazie 56:907–926

    Google Scholar 

  142. Chen YJ, Jin RX, Zhou YQ, Zeng J, Zhang H, Feng QR (2006) Preparation of solid lipid nanoparticles loaded with Xionggui powder-supercritical carbon dioxide fluid extraction and their evaluation in vitro release. Zhongguo Zhong Yao Za Zhi 31:376–379

    Google Scholar 

  143. Freitas C, Muller RH (1998) Spray-drying of Solid lipid nanoparticles (SLN TM). Eur J Pharm Biopharm 46:145–151

    Google Scholar 

  144. Charcosset C, El-Harati A, Fessi H (2005) Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 108:112–120

    Google Scholar 

  145. Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD (2003) Brain uptake of thiamine-coated nanoparticles. J Control Release 93:271–282

    Google Scholar 

  146. Manjunath K, Reddy JS, Venkateswarlu V (2005) Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 27:127–144

    Google Scholar 

  147. Thassu D, Pathak Y, Deleers M (2007) Nanoparticulate drug delivery systems: nanoengineering of drug delivery systems. Informa Healthcare, New York, pp 99–109

    Google Scholar 

  148. Cook RO, Pannu RK, Kellaway IW (2005) Novel sustained release microspheres for pulmonary drug delivery. J Control Release 104:79–90

    Google Scholar 

  149. Westesen K, Siekmann B, Koch MHJ (1993) Investigations on the physical state of lipid nanoparticles by synchrotron X-ray diffraction. Int J Pharm 93:189–199

    Google Scholar 

  150. Guo X, Xing Y, Zhang X, Li J, Mei Q, Zhang H, Chen C, Zhang Z, Cui F (2012) In vivo controlled release and prolonged antitumor effects of 2-methoxyestradiol solid lipid nanoparticles incorporated into a thermosensitive hydrogel. Drug Deliv 19:188–193

    Google Scholar 

  151. Guo X, Cui F, Xing Y, Mei Q, Zhang Z (2011) Investigation of a new injectable thermosensitive hydrogel loading solid lipid nanoparticles. Pharmazie 66:948–952

    Google Scholar 

  152. Muller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Google Scholar 

  153. zur Muhlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery – drug release and release mechanism. Eur J Pharm Biopharm 45:149–155

    Google Scholar 

  154. Muller RH, Mehnert W, Lucks JS, Schwarz C, Muhlen AZ, Weyhers H, Freitas C, Ruhl D (1995) Solid lipid nanoparticles (SLN) – an alternative colloidal carrier systems for controlled drug delivery. Eur J Pharm Biopharm 41:62–69

    Google Scholar 

  155. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139

    Google Scholar 

  156. Tiwari SB, Amiji MM (2006) A review of nanocarrier based CNS delivery systems. Cur Drug Deliv 3:219–232

    Google Scholar 

  157. Xiang QY, Wang MT, Chen F, Gong T, Jian YL, Zhang ZR, Huang Y (2007) Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Arch Pharm Res 30:519–525

    Google Scholar 

  158. Kreuter J (2001) Nanoparticles system for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    Google Scholar 

  159. Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, Kreuter J, Gelperina S (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 117:51–58

    Google Scholar 

  160. Iea B (2004) Negative preclinical results with stealth1 nanospheres encapsulated doxorubicin in an orthotopic murine brain tumor model. J Control Release 100:29–40

    Google Scholar 

  161. Allen DD, Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ (2003) Brain uptake of thiamine-coated nanoparticles. J Control Release 93:271–282

    Google Scholar 

  162. Thole M, Nobmanna S, Huwyler J, Bartmann A, Fricker GJ (2002) Uptake of cationized albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target 10:337–344

    Google Scholar 

  163. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    Google Scholar 

  164. Kakkar V, Kaur IP (2012) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49:2906–2913

    Google Scholar 

  165. Kakkar V, Kaur IP (2012) Antidepressant activity of curcumin loaded solid lipid nanoparticles (C-SLNs) in mice. Am J PharmTech Res 2:729–736

    Google Scholar 

  166. Yassin AEB, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA (2010) Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci 7:398–408

    Google Scholar 

  167. Lu B, Xiong S-B, Yang H, Yin X-D, Chao R-B (2006) Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 28:86–95

    Google Scholar 

  168. Reddy JS, Venkateshwarlu V (2004) Novel delivery systems for drug targeting to the brain. Drugs Future 29:63–83

    Google Scholar 

  169. www.agius.com, http://www.agius.com/hew/resource/toxicol.htm. Accessed 5 May 2013

  170. Zhao J, Castranova V (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev 14:593–632

    Google Scholar 

  171. Silva AC, González-Mira ME, Garcia ML, Egea MA, Fonseca J, Silva R (2011) Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces 86:158–165

    Google Scholar 

  172. Muller R, Ruhl D, Runge S, Sculze-Foster K, Mehenert W (1997) Cytotoxicity of solid lipid nanoparticles as a function of lipid matrix and the surfactant. Pharm Res 4:458–462

    Google Scholar 

  173. Weyhers H, Hahn WMH, Muller RH (1995) Solid lipid nanoparticles-determination of in vivo toxicity. First world meeting APGI/APV489-490

    Google Scholar 

  174. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477

    Google Scholar 

  175. Charman WN, Porter CJH, Mithani S, Dressman JB (1997) Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 86:269–282

    Google Scholar 

  176. Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97

    Google Scholar 

  177. Gasco MR (2007) Nanoparticulate drug delivery systems: gastrointestinal applications of nanoparticulate drug-delivery systems. Informa Healthcare, New York, pp 305–316

    Google Scholar 

  178. Hu L, Xing Q, Meng J, Shang C (2010) Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech 11(2):582–587

    Google Scholar 

  179. Varshosaz J, Minayian M, Moazen E (2010) Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J Liposome Res 20:115–123

    Google Scholar 

  180. Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, Agarwal MG (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58:2095–2099

    Google Scholar 

  181. Li HL, Zhao XB, Ma YK, Zhai GX, Li LB, Lou HX (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133:238–244

    Google Scholar 

  182. Luo Y, Chen D, Ren L, Zhao X, Qin J (2006) Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release 114:53–59

    Google Scholar 

  183. Müller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB (2006) Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int J Pharm 317:82–89

    Google Scholar 

  184. Manjunath K, Venkateshwarlu V (2006) Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target 14:632–645

    Google Scholar 

  185. Wang JX, Sun X, Zhang ZR (2002) Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 54:285–290

    Google Scholar 

  186. Yang S, Zhu J, Lu Y, Liang B, Yang C (1999) Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 16:751–757

    Google Scholar 

  187. Pandey R, Sharma S, Khuller GK (2005) Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 85:415–420

    Google Scholar 

  188. Xie S, Zhu L, Dong Z, Wang Y, Wang X, Zhou W (2011) Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int J Nanomedicine 6:547–555

    Google Scholar 

  189. Huang L, Liu Y (2011) In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng 13:507–530

    Google Scholar 

  190. Li W, Szoka FC (2007) Lipid based nanoparticles for nucleic acid delivery. Pharm Res 24:438–449

    Google Scholar 

  191. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Google Scholar 

  192. Nyunt MT, Dicus CW, Cui Y-Y, Yappert MC, Huser TR, Nantz MH, Wu J (2009) Physico-chemical characterization of polylipid nanoparticles for gene delivery to the liver. Bioconjug Chem 20:2047–2054

    Google Scholar 

  193. Fan Y, Wu J (2013) Polylipid nanoparticle, a novel lipid-based vector for liver gene transfer.Gene Therapy - Tools and Potential Applications. Francisco Martin Molina (Ed.). InTech

    Google Scholar 

  194. Jian LI, Ying-ZI HE, Wen LI, Shen Y-Z, Y-R LI, Wang Y-F (2010) A novel polymer-lipid hybrid nanoparticle for efficient nonviral gene delivery. Acta Pharmacol Sin 31:509–514

    Google Scholar 

  195. Wang J, Ornek-Ballanco C, Xu J, Yang W, Yu X (2013) Preparation and characterization of vinculin-targeted polymer–lipid nanoparticle as intracellular delivery vehicle. Int J Nanomedicine 8:39–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Pal Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaur, I.P., Bhandari, R., Yakhmi, J.V. (2014). Lipids as Biological Materials for Nanoparticulate Delivery. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_27

Download citation

Publish with us

Policies and ethics