Skip to main content

Development of the Experiment Detection Technique

  • Chapter
  • First Online:
Natural Gas Hydrates

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1926 Accesses

Abstract

Three detection techniques, namely, acoustic, resistivity, and time domain reflectometry (TDR) methods, are available here to measure the physical properties of gas hydrate-bearing sediments. These techniques have been developed from repeated experiments and prove suitable for tests of gas hydrate. The acoustic detection technique contains a traditional acoustic detection and a new kind of bender element technique, which is used to measure acoustic velocities of hydrated consolidated sediments and hydrated unconsolidated sediments, respectively. A precision resistance testing system is developed to monitor chemical reactions and also study dynamic equilibrium according to the frequency response characteristics of the system. TDR is successfully introduced in detecting hydrate saturations in real time during hydrate formation and dissociation in sediments. Such technical innovation can guarantee smooth experimental research. In particular, the TDR technique, combined with other methods, provides a very promising approach to these experiments. It can detect, in real time, hydrate saturation in sediments and lets us know the quantitative relationships between the various physical parameters and hydrate saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winters WJ, Pecher IA, Booth JS, et al. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Geol Surv Can Bull. 1999;544:241–50.

    Google Scholar 

  2. Winters WJ, Waite WF, Mason DH, et al. Sediment properties associated with gas hydrate formation. In: 4th International Conference on Gas Hydrate, Yokohama, Japan, May 19−23; 2002, p. 722−7.

    Google Scholar 

  3. Winters WJ, Waite WF, Pecher IA, et al. Comparison of methane gas hydrate formation on physical properties of fine- and coarse-grained sediments. In: AAPG Hedberg Conference “Gas hydrate: Energy Resource Potential and Associated Geologic Hazards”, Vancouver, BC, Canada, 12−16 Sept; 2004, p. 1−5.

    Google Scholar 

  4. Winters WJ, Waite WF, Mason DH, et al. Methane gas hydrate effect on sediment acoustic and strength properties. J Pet Sci Eng. 2007;56:127–35.

    Article  Google Scholar 

  5. Waite WF, Winters WJ, Mason DH. Methane hydrate formation in partially water-saturated Ottawa sand. Am Mineral. 2004;89:1202–7.

    Google Scholar 

  6. Waite WF, Kneafsey TJ, Winters WJ, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization. J Geophys Res. 2008;113(B7):1–12.

    Article  Google Scholar 

  7. Priest JA, Best A, Clayton C, et al. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J Geophys Res. 2005;110:B04102.

    Article  Google Scholar 

  8. Priest JA, Rees EVL, Clayton C. Influence of gas hydrate morphology on the seismic velocities of sands. J Geophys Res. 2009;114:B11205. doi:10.1029/2009JB006284.

    Article  Google Scholar 

  9. Yang J, Llamedo M, Marinakis D, et al. Successful application of a versatile ultrasonic test system for gas hydrates in unconsolidated sediments. Paper presented at Fifth International Conference on Gas Hydrates, Trondheim, Norway, 12−16 June; 2005.

    Google Scholar 

  10. Yun TS, Francisca FM, Santamarina JC. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys Res Lett. 2005;32:L10609. doi:10.1029/2005GL022607.

    Article  Google Scholar 

  11. Yun TS, Santamarina JC, Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J Geophys Res. 2007;112:B04106.

    Article  Google Scholar 

  12. Yun TS, Narsilio GA, Santamarina JC, et al. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure. Mar Geol. 2006;229:285–93.

    Article  Google Scholar 

  13. Lee JY, Yun TS, Santamarina JC, et al. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochem Geophy Geosys. 2007;8:Q06003. doi:10.1029/2006GC001531.

    Article  Google Scholar 

  14. Onishi K, Matsuoka T, Tsukada K. P-wave velocity change of porous media due to the freezing and thawing process of methane hydrate. Paper presented at Sixth International Conference on Gas Hydrate, British Columbia, Canada; 2008

    Google Scholar 

  15. Sothcott J, McCann C, O’Hara SG. The influence of two different pore fluids on acoustic properties of reservoir sandstones at sonic and ultrasonic frequencies. 70th Ann. Mtg., Soc. Expi. Geophys., Expanded Abstracts, vol. 2; 2000, p. 1883−6.

    Google Scholar 

  16. Ye Yuguang, Liu Changling, Liu Shouquan, et al. Simulated experimental study on several significant research on the sea floor hydrate. High Technol Lett. 2004;10(Suppl):352–9.

    Google Scholar 

  17. Hu Gaowei, Ye Yuguang, Zhang Jian, et al. Study on gas hydrate formation-dissociation and its acoustic responses in unconsolidated sands. Geoscience. 2008;22(3):465–74.

    Google Scholar 

  18. Ye Yuguang, Zhang Jian, Hu Gaowei, et al. Combined detection technique for ultrasonic and time domain reflectometry in gas hydrate. Mar Geol Quat Geol. 2008;28(5):101–7.

    Google Scholar 

  19. Shirley DJ. An improved shear wave transducer. J Acoust Soc Am. 1978;63(5):1643–5.

    Article  Google Scholar 

  20. Shirley DJ, Hampton LD. Shear wave measurements in laboratory sediments. J Acoust Soc Am. 1978;63(2):607–13.

    Article  Google Scholar 

  21. Dyvik R, Madshus C. Lab measurements of Gmax using bender element. In: Proceedings of ASCE Convention on Advances in the Art of Testing Soils under Cyclic Conditions; 1985, p. 186−96.

    Google Scholar 

  22. Jovicic V, Coop MR, Simic M. Objective criteria for determining Gmax from bender element tests. Geotechnique. 1996;46(2):357–62.

    Article  Google Scholar 

  23. Jovicic V, Coop MR. Interpretation of bender element tests. Geotechnique. 1997;47(3):875.

    Google Scholar 

  24. Zeng X, Ni B. Application of bender elements in measuring Gmax of sand under K0 condition. Geotech Test J. 1998;21(3):251–63.

    Article  Google Scholar 

  25. Arulnathan R, Boulanger RW, Reimer MF. Analysis of bender element tests. Geotech Test J. 1998;21(2):120–31.

    Article  Google Scholar 

  26. Clayton CRI, Theron M, Best AI. The measurement of vertical shear-wave velocity using side-mounted bender elements in the triaxial apparatus. Geotechnique. 2004;54(7):495–8.

    Article  Google Scholar 

  27. Ji Meixiu, Chenx Chen, Huang Bo. Method for precisely determining shear wave velocity of soil from bender element tests. Chin J Geotech Eng. 2003;25(6):732–6.

    Google Scholar 

  28. Thomann TG, Hryciw RD. Laboratory measurement of small strain shear modulus under K0 conditions. Geotechn Test J. 1990;13(2):97–105.

    Article  Google Scholar 

  29. Souto A, Hartikainen J, Ozudogru K. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests. Geotechnique. 1994;44(3):519–26.

    Article  Google Scholar 

  30. Viggiani G, Atkinson JH. Interpretation of bender element tests. Geotechnique. 1997;45(1):149–54.

    Google Scholar 

  31. Leong EC, Cahyadi J, Rahardjo H. Measuring shear and compression wave velocities of soil using bender-extender elements. Can Geotech J. 2009;46:792–812.

    Article  Google Scholar 

  32. Lee JS, Santamarina JC. Bender elements: performance and signal interpretation. J Geotech Geoenviron Eng. 2005;131:1063–70.

    Article  Google Scholar 

  33. Chen Yunmin, Zhou Yanguo, Huang Bo. International parallel test on the measurement of shear modulus of sand using bender elements. Chin J Geotechn Eng. 2006;28(7):874–80.

    Google Scholar 

  34. Huang Bo, Yin Jianhua, Chen Yunmin, et al. Measurements of elastic shear modulus Gmax using piezoceramic bender elements. J Vib Eng. 2001;14(2):155–60.

    Google Scholar 

  35. Ji Meixiu. Study on shear wave velocity of piezoceramic bender elements and dynamic properties of saturated yielding soil. Doctor Dissertations of Zhejiang University, Zhejiang University, Hangzhou; 2005.

    Google Scholar 

  36. Hamstd MA, Gallagher AO, Gary JA. Wavelet transform applied to acoustic emission signals. J Acoust Emiss. 2002;20:39–82.

    Google Scholar 

  37. Gaul L, Hurlebaus S. Identification of the impact location on a plate using wavelets. Mech Sys Signal Process. 1997;12(6):783–95.

    Article  Google Scholar 

  38. Ding Y, Reuben RL, Steel JA. A new method for waveform analysis for estimating AE wave arrival times using wavelet dissociation. NDT&E Int. 2004;37:279–90.

    Article  Google Scholar 

  39. Eong JH, Jang YS. Wavelet analysis of plate wave propagation in composite laminates. Compos Struct. 2000;49:443–50.

    Article  Google Scholar 

  40. Suzuki H, Kinjo T, Hayashi Y, et al. Wavelet transform of acoustic emission signals. J Acoust Emiss. 1996;14(2):69–84.

    Google Scholar 

  41. Takemoto M, Nishino H, Ono K. Wavelet transform-application to AE signals analysis. Acoustic Emission-Beyond the Millennium. New York: Elsevier; 2000. p. 35–56.

    Google Scholar 

  42. Mallat S. A wavelet tour of signal processing. San Diego: Academic; 1998.

    Google Scholar 

  43. Coifman RR, Meyer Y, Wickerhauser MV. Wavelet analysis and signal processing. In: Ruskai MB et al., editors. Wavelets and their applications. Boston: Jones and Bartlett; 1992. p. 153–78.

    Google Scholar 

  44. Vallen-Systeme GmbH, Munich, Germany, http://www.vallen.de/wavelet/index.html; 2001.

  45. Gardner W, Kirkham D. Determination of soil moisture by neutron scattering. Soil Sci. 1951;73:391–401.

    Article  Google Scholar 

  46. Reginato RJ, van Bavel CHM. Soil water measurement with gamma attenuation. Soil Sci Soc Am Proc. 1964;28:721–4.

    Article  Google Scholar 

  47. Zhao Zhao, He Xingdong, Duan Zhenghu, et al. Application of electrical resistance method on monitoring the soil moisture dynamics in sandy land. J Desert Res. 2000;20(3):323–5.

    Google Scholar 

  48. Huisman JA, Hubbard SS, Redman JD, et al. Measuring soil water content with ground penetrating radar: a review. Vadose Zone J. 2003;2:476–91.

    Google Scholar 

  49. Topp GC, Davis JL, Annan AP. Electromagnetic determination of soil-water content: measurement in coaxial transmission line. Water Resour Res. 1980;16(3):574–82.

    Article  Google Scholar 

  50. Noborio K. Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput Electron Agric. 2001;31:213–37.

    Article  Google Scholar 

  51. Dasberg S, Dalton FN. Time domain reflectometry: field measurement of soil water content and electrical conductivity. Soil Sci Soc Am J. 1985;49:293–7.

    Article  Google Scholar 

  52. Smith MW, Patterson DE. Determining the unfrozen water content in soils by time-domain reflectometry. Atm Ocean. 1984;22(2):261–3.

    Article  Google Scholar 

  53. Sass O. Rock moisture measurements: techniques, results, and implications for weathering. Earth Surf Process Landf. 2005;30:359–74.

    Article  Google Scholar 

  54. Wraith JM, Robinson DA, Jones SB, et al. Spatially characterizing apparent electrical conductivity and water content of surface soils with time domain reflectometry. Comput Electron Agric. 2005;46:239–61.

    Article  Google Scholar 

  55. Dalton FN, Herkrlrath WN, Rawlins DS, et al. Time domain reflectometry; simultaneous measurements of soil water and electrical conductivity with a single probe. Science. 1984;224:989–90.

    Article  Google Scholar 

  56. Nissen HH, Ferre PA, Moldrup P. Time domain reflectometry developments in soil science: unbalanced two-rod probe spatial sensitivity and sampling volume. Soil Sci. 2003;168(2):77–83.

    Article  Google Scholar 

  57. Wright JF, Nixon FM, Dallimore SR, et al. A method for direct measurement of gas hydrate amounts based on the bulk dielectric properties of laboratory test media. In: Fourth International Conference on Gas Hydrate, Yokohama; 2002, p. 745−9.

    Google Scholar 

  58. Gong Yuanshi, Li Zizhong, Liao Chaozi, et al. Determination of soil moisture of farmland by time domain reflectometer. Adv Water Sci. 1997;18(4):329–34.

    Google Scholar 

  59. Wang Shaoling, Yang Meixue, Toshio Koike, et al. Application of time-domain-reflectometer to researching moisture variation in active layer on the Tibetan Plateau. J Glaciol Geocryol. 2000;22(1):78–84.

    Google Scholar 

  60. Ren Tusheng, Shao Ming’an, Ju Zhaoqiang. Measurement of soil physical properties with thermo-time domain reflectometry. Appl Acta Pedol Sin. 2004;41(2):225–9.

    Google Scholar 

  61. Diao Shaobo, Ye Yuguang, Yue Yingjie, et al. Measurement of thermal-physical parameters of gas hydrate in porous media. Rock Miner Anal. 2008;27(3):165–8.

    Google Scholar 

  62. Kittel C. Introduction to solid state physics. 3rd ed. New York: Wiley; 1960.

    Google Scholar 

  63. Campbell JE. Dielectric properties and influence of conductivity in soil at one to fifty megahertz. Soil Sci Soc Am J. 1990;54:332–41.

    Article  Google Scholar 

  64. Heimovaara TJ. Frequency domain analysis of time domain reflectometry waveforms: 1. measurement of the complex dielectric permittivity of soils. Water Resour Res. 1994;30(2):189–99.

    Article  Google Scholar 

  65. Zegelin SJ, White I, Jenkins DR. Improved field probes for soil water content and electrical conductivity measurements using time domain reflectometry. Water Resour Res. 1989;25(11):2367–76.

    Article  Google Scholar 

  66. Robinson DA, Friedman SP. Parallel plates compared with conventional reflectometry rodsas TDR waveguides for sensing soil moisture. Subsurf Sens Technol Appl. 2000;1(4):137–51.

    Article  Google Scholar 

  67. Scott BJ, Jon MW, Dani O. Time domain reflectometry measurement principle and applications. Hydrol Process. 2002;16:141–53.

    Article  Google Scholar 

  68. Hu Gaowei, Ye Yuguang, Diao Shaobo, et al. Research of time domain reflectometry in measuring water content of marine sediments. Geoscience. 2010;24(3):622–6.

    Google Scholar 

  69. Stoll RD, Bryan GM. Physical properties of the sediments containing gas hydrates. J Geophys Res. 1979;84(B4):1629–34.

    Article  Google Scholar 

  70. Cook JG, Leaist DG. An exploratory study of the thermal conductivity of methane hydrate. Geophys Res Lett. 1983;10(5):397–9.

    Article  Google Scholar 

  71. Waite WF, Pinkston J, Stephen HK. Preliminary laboratory thermal conductivity measurement in pure methane hydrate and methane hydrate-sediment mixtures. A Progress Report. In: Proceeding of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, 19–23 May; 2002, p. 728−33.

    Google Scholar 

  72. Yoshitaka Y, Taro K, Michica O, et al. Measurement of conductivity of artificial hydrate sediment sample. In: Proceeding of the Fourteenth International Offshore and Polar Engineering Conference Toulon, France, 23−28 May; 2004. ISBN 1-880653-62-1; ISSN 1098−6189.

    Google Scholar 

  73. Huang Duzi. Thermal conductivity of gas hydrate. Chemistry. 2004;10:737–42.

    Article  Google Scholar 

  74. Huang Duzi. Measurements of gas hydrate composition and its thermal conductivity. Chin J Geophys. 2005;48(5):1125–31.

    Google Scholar 

  75. Peng Hao. The determination of thermal conductivity of tetrahydrofuran hydrate at atmospheric pressure by transient plane source method. Chemistry. 2005;12:923–7.

    Google Scholar 

  76. Kluitenbeyg GJ, Ham JM, Bristow KL. Error analysis of heat pulse method for measuring soil volumetric heat capacity. Soil Sci Soc Am. 1993;57:1444–51.

    Article  Google Scholar 

  77. Kluitenbeyg GJ, Bristow KL, Das BS. Error analysis of heat pulse method for measuring soil heat capacity, diffusivity, and conductivity. Soil Sci Soc Am. 1995;59:719–26.

    Article  Google Scholar 

  78. Buffett BA, Zatsepina OY. Formation of gas hydrate from dissolved gas in natural porous media. Mar Geol. 2000;164:69–77.

    Article  Google Scholar 

  79. Zhao Hongwei, Diao Shaobo, Ye Yuguang, et al. Technique of detecting impedance of hydrate in porous medium. Mar Geol Quat Geol. 2005;25(1):137–41.

    Google Scholar 

  80. Chen Qiang, Liu Changling, Ye Yuguang. Preliminary research about the nucleation of gas hydrate in porous media. Acta Pet Sin (Pet Process Sect). 2008;24(3):345–9.

    Google Scholar 

  81. Spangenberg E, Kulenkampff J. Physical properties of gas hydrate-bearing sediments. In: 5th International Conference on Gas Hydrate, Trondheim, Norway; 2005, p. 587−96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ye, Y. (2013). Development of the Experiment Detection Technique. In: Ye, Y., Liu, C. (eds) Natural Gas Hydrates. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31101-7_2

Download citation

Publish with us

Policies and ethics