Skip to main content

Neurotransmitter Release During Deep Brain Stimulation

  • Chapter
  • First Online:
Deep Brain Stimulation

Abstract

Deep brain stimulation (DBS) is currently under investigation for treatment of a number of psychiatric indications, including obsessive–compulsive disorder, treatment-resistant depression, and Tourette’s syndrome. Despite its clinical efficacy, the mechanism of action of DBS is incompletely understood. Contrary to the previously proposed mechanism of local inhibition of neural elements at the stimulation site, recent studies have argued that DBS may also cause excitation of efferent target neurons and subsequent changes in neural network activity and neurotransmitter release at various nodes within the neural network. However, the necessary link between symptom change and a corresponding change in neurotransmitters has yet to be firmly established and will be essential to advance our understanding of psychiatric neurobiology. In this chapter, we briefly review the growing scientific evidence in regard to neurotransmitter release as a possible mechanism of action of DBS and the potential impact on neuropsychiatric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M, Taylor SF, Martis B, Giordani B (2005) Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 57(5):510–516

    Article  PubMed  Google Scholar 

  • Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH (2009) Wireless instantaneous neurotransmitter concentration system-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg 111(4):701–711

    Article  PubMed  Google Scholar 

  • Agnesi F, Blaha CD, Lin J, Lee KH (2010) Local glutamate release in the rat ventral lateral thalamus evoked by high-frequency stimulation. J Neural Eng 7(2):26009

    Article  PubMed  Google Scholar 

  • Babiloni C, Pizzella V, Gratta CD, Ferretti A, Romani GL (2009) Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. Int Rev Neurobiol 86:67–80

    Article  PubMed  Google Scholar 

  • Baker KB, Kopell BH, Malone D, Horenstein C, Lowe M, Phillips MD, Rezai AR (2007) Deep brain stimulation for obsessive-compulsive disorder: using functional magnetic resonance imaging and electrophysiological techniques: technical case report. Neurosurgery 61(5 Suppl 2):E367–E368; discussion E368

    Google Scholar 

  • Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M (2008) Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1–6):344–346

    PubMed  CAS  Google Scholar 

  • Benabid AL, Koudsie A, Benazzouz A, Fraix V, Ashraf A, Le Bas JF, Chabardes S, Pollak P (2000) Subthalamic stimulation for Parkinson’s disease. Arch Med Res 31(3):282–289

    Article  PubMed  CAS  Google Scholar 

  • Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99(2):289–295

    Article  PubMed  CAS  Google Scholar 

  • Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356

    PubMed  CAS  Google Scholar 

  • Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67(2):110–116

    Article  PubMed  Google Scholar 

  • Blaha CD, Lester DB, Ramsson ES, Lee KH, Garris PA (2008) Striatal dopamine release evoked by subthalamic stimulation in intact and 6-OHDA-lesioned rats: relevance to deep brain stimulation in Parkinson’s disease. In: Proceedings of the 12th international conference on In Vivo methods, University of British Columbia, Vancouver, Canada, pp 395–397

    Google Scholar 

  • Bledsoe JM, Kimble CJ, Covey DP, Blaha CD, Agnesi F, Mohseni P, Whitlock S, Johnson DM, Horne A, Bennet KE, Lee KH, Garris PA (2009) Development of the wireless instantaneous neurotransmitter concentration system for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. J Neurosurg 111(4):712–723

    Article  PubMed  CAS  Google Scholar 

  • Borland LM, Shi G, Yang H, Michael AC (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146(2):149–158

    Article  PubMed  CAS  Google Scholar 

  • Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M (2001) High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 60(1):15–24

    PubMed  CAS  Google Scholar 

  • Brundege JM, Dunwiddie TV (1997) Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol 39:353–391

    Article  PubMed  CAS  Google Scholar 

  • Ceballos-Baumann AO (2003) Functional imaging in Parkinson’s disease: activation studies with PET, fMRI and SPECT. J Neurol 250(Suppl 1):I15–I23

    Article  PubMed  Google Scholar 

  • Cechova S, Venton BJ (2008) Transient adenosine efflux in the rat caudate-putamen. J Neurochem 105(4):1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Clapp-Lilly KL, Roberts RC, Duffy LK, Irons KP, Hu Y, Drew KL (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90(2):129–142

    Article  PubMed  CAS  Google Scholar 

  • Covey DP, Garris PA (2009) Using fast-scan cyclic voltammetry to evaluate striatal dopamine release elicited by subthalamic nucleus stimulation. Conf Proc IEEE Eng Med Biol Soc 2009:3306–3309

    PubMed  Google Scholar 

  • Dawson LA, Nguyen HQ, Smith DL, Schechter LE (2002) Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol 16(2):145–152

    Article  PubMed  CAS  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337

    Article  PubMed  CAS  Google Scholar 

  • Eidelberg D, Edwards C (2000) Functional brain imaging of movement disorders. Neurol Res 22(3):305–312

    PubMed  CAS  Google Scholar 

  • Falowski SM, Sharan A, Reyes BA, Sikkema C, Szot P, Van Bockstaele EJ (2011) An Evaluation of Neuroplasticity and Behavior Following Deep Brain Stimulation of the Nucleus Accumbens in an Animal Model of Depression. Neurosurgery 69(6):1281–1290

    Article  PubMed  Google Scholar 

  • Garcia L, D’Alessandro G, Bioulac B, Hammond C (2005) High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci 28(4):209–216

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, DeLong M (1997) Tracing the brain’s circuitry with functional imaging. Nat Med 3(6):602–603

    Article  PubMed  CAS  Google Scholar 

  • Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, Salloway SP, Okun MS, Goodman WK, Rasmussen SA (2006) Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31(11):2384–2393

    Article  PubMed  Google Scholar 

  • Griessenauer CJ, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Garris PA, Lee KH (2010) Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry—a proof-of-principle study. J Neurosurg 113(3):656–665

    Article  PubMed  CAS  Google Scholar 

  • Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, Fletcher PJ, Nobrega JN (2010) Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry 67(2):117–124

    Article  PubMed  Google Scholar 

  • Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916–1923

    PubMed  CAS  Google Scholar 

  • Hershey T, Revilla FJ, Wernle AR, McGee-Minnich L, Antenor JV, Videen TO, Dowling JL, Mink JW, Perlmutter JS (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61(6):816–821

    Article  PubMed  CAS  Google Scholar 

  • Jech R, Urgosik D, Tintera J, Nebuzelsky A, Krasensky J, Liscak R, Roth J, Ruzicka E (2001) Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord 16(6):1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5(2):294–308

    Article  PubMed  Google Scholar 

  • Kita H, Tachibana Y, Nambu A, Chiken S (2005) Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J Neurosci 25(38):8611–8619

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Blaha CD, Harris BT, Cooper S, Hitti FL, Leiter JC, Roberts DW, Kim U (2006) Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease. Eur J Neurosci 23(4):1005–1014

    Article  PubMed  Google Scholar 

  • Lujan JL, Chaturvedi A, McIntyre CC (2008) Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders. Front Biosci 13:5892–5904

    Article  PubMed  Google Scholar 

  • Maciunas RJ, Maddux BN, Riley DE, Whitney CM, Schoenberg MR, Ogrocki PJ, Albert JM, Gould DJ (2007) Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. J Neurosurg 107(5):1004–1014

    Article  PubMed  Google Scholar 

  • Magarinos-Ascone C, Pazo JH, Macadar O, Buno W (2002) High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson’s disease. Neuroscience 115(4):1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65(4):267–275

    Article  PubMed  Google Scholar 

  • Maurice N, Thierry AM, Glowinski J, Deniau JM (2003) Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J Neurosci 23(30):9929–9936

    PubMed  CAS  Google Scholar 

  • Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660

    Article  PubMed  CAS  Google Scholar 

  • McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27(46):12601–12610

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CC, Grill WM (1998) Sensitivity analysis of a model of mammalian neural membrane. Biol Cybern 79(1):29–37

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004a) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91(4):1457–1469

    Article  PubMed  Google Scholar 

  • McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004b) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115(3):589–595

    Article  PubMed  Google Scholar 

  • McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004c) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115(6):1239–1248

    Google Scholar 

  • Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, Kusserow H, Winter C, Morgenstern R, Kupsch A (2003) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85(3):601–609

    Article  PubMed  CAS  Google Scholar 

  • Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96(3):1569–1580

    Article  PubMed  Google Scholar 

  • Mitchell ND, Baker GB (2010) An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr Scand 122(3):192–210

    Article  PubMed  CAS  Google Scholar 

  • Nagayama H, Tsuchiyama K, Yamada K, Akiyoshi J (1991) Animal study on the role of serotonin in depression. Prog Neuropsychopharmacol Biol Psychiatry 15(6):735–744

    Article  PubMed  CAS  Google Scholar 

  • Nestler E, Duman R (2002) Neuropsychopharmacology: the fifth generation of progress: an official publication of the American College of Neuropsychopharmacology. K. Davis, Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641

    Article  PubMed  CAS  Google Scholar 

  • Nuttin BJ, Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG, Maes AF, Dupont PJ, Gybels JM, Gielen F, Demeulemeester HG (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52(6):1263–1272; discussion 1272–1264

    Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78

    Article  PubMed  CAS  Google Scholar 

  • Paul G, Reum T, Meissner W, Marburger A, Sohr R, Morgenstern R, Kupsch A (2000) High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic metabolism in the naive rat. NeuroReport 11(3):441–444

    Article  PubMed  CAS  Google Scholar 

  • Phillips MD, Baker KB, Lowe MJ, Tkach JA, Cooper SE, Kopell BH, Rezai AR (2006) Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus–initial experience. Radiology 239(1):209–216

    Article  PubMed  Google Scholar 

  • Phillis JW (2004) Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels. Crit Rev Neurobiol 16(4):237–270

    Article  PubMed  CAS  Google Scholar 

  • Poewe W (2009) Treatments for Parkinson disease–past achievements and current clinical needs. Neurology 72(7 Suppl):S65–S73

    Article  PubMed  CAS  Google Scholar 

  • Remple MS, Sarpong Y, Neimat JS (2008) Frontiers in the surgical treatment of Parkinson’s disease. Expert Rev Neurother 8(6):897–906

    Article  PubMed  Google Scholar 

  • Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33(2):368–377

    Article  PubMed  Google Scholar 

  • Sestini S, Ramat S, Formiconi AR, Ammannati F, Sorbi S, Pupi A (2005) Brain networks underlying the clinical effects of long-term subthalamic stimulation for Parkinson’s disease: a 4-year follow-up study with rCBF SPECT. J Nucl Med 46(9):1444–1454

    PubMed  Google Scholar 

  • Shon YM, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Blaha CD, Lee KH (2010a) Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle. J Neurosurg 112(3):539–548

    Article  PubMed  Google Scholar 

  • Shon YM, Lee KH, Goerss SJ, Kim IY, Kimble C, Van Gompel JJ, Bennet K, Blaha CD, Chang SY (2010b) High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett 475(3):136–140

    Article  PubMed  CAS  Google Scholar 

  • Smith ID, Grace AA (1992) Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 12(4):287–303

    Article  PubMed  CAS  Google Scholar 

  • Steeves TD, Ko JH, Kideckel DM, Rusjan P, Houle S, Sandor P, Lang AE, Strafella AP (2010) Extrastriatal dopaminergic dysfunction in Tourette syndrome. Ann Neurol 67(2):170–181

    Article  PubMed  CAS  Google Scholar 

  • van Eijsden P, Hyder F, Rothman DL, Shulman RG (2009) Neurophysiology of functional imaging. Neuroimage 45(4):1047–1054

    Article  PubMed  Google Scholar 

  • Van Laere K, Nuttin B, Gabriels L, Dupont P, Rasmussen S, Greenberg BD, Cosyns P (2006) Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum. J Nucl Med 47(5):740–747

    PubMed  Google Scholar 

  • Vernaleken I, Kuhn J, Lenartz D, Raptis M, Huff W, Janouschek H, Neuner I, Schaefer WM, Grunder G, Sturm V (2009) Bithalamical deep brain stimulation in Tourette syndrome is associated with reduction in dopaminergic transmission. Biol Psychiatry 66(10):e15–e17

    Article  PubMed  Google Scholar 

  • Walker RH, Koch RJ, Moore C, Meshul CK (2009) Subthalamic nucleus stimulation and lesioning have distinct state-dependent effects upon striatal dopamine metabolism. Synapse 63(2):136–146

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1985) Antidepressants and serotonergic neurotransmission: an integrative review. Psychopharmacology (Berl) 85(4):387–404

    Article  CAS  Google Scholar 

  • Windels F, Bruet N, Poupard A, Feuerstein C, Bertrand A, Savasta M (2003) Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats. J Neurosci Res 72(2):259–267

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall H. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abulseoud, O.A., Knight, E.J., Lee, K.H. (2012). Neurotransmitter Release During Deep Brain Stimulation. In: Denys, D., Feenstra, M., Schuurman, R. (eds) Deep Brain Stimulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30991-5_18

Download citation

Publish with us

Policies and ethics