Skip to main content

Mechanosensory Pathways in Angiocrine Mediated Tissue Regeneration

  • Chapter
  • First Online:
Mechanical and Chemical Signaling in Angiogenesis

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 12))

Abstract

Endothelial cells not only form the vascular networks that deliver nutrients and oxygen throughout the body, they also establish instructive niches that stimulate organ regeneration through elaboration of paracrine trophogens. Priming of the vascular niche promotes repair and regeneration of damaged tissues by establishing an inductive vascular network that temporally precedes new tissue formation. This induction of endothelial cells provides a platform for essential instructive cues. Tissue regeneration in certain organs such as the liver, involves cell mitosis and expansion, which is orchestrated by a dynamic interplay between cytokines, growth factors, and metabolic pathways. Although the intrinsic events of cell mitosis have been thoroughly studied, the extrinsic triggers for initiation and termination of liver regeneration, especially the set points rendered by the original liver size, are unknown. Furthermore, the gatekeepers that control organ size remain unidentified. The prevailing dogma states that liver regeneration involves the proliferation of parenchymal hepatocytes and nonparenchymal cells such as biliary epithelial cells. However, recent findings also implicate hepatic sinusoidal endothelial cells (SECs) as drivers of this process. In the classic liver regeneration model, in which 70 % partial hepatectomy induces regeneration, the abrupt increase in blood flow into the sinusoidal vasculature of the liver’s remaining lobes correlates with initiation of the regeneration cascade. As such, the shear stress and mechanical stretch exerted on the endothelial cells may activate mechanosensory mediated molecular programs, and may be involved in the elaboration of endothelial cell-derived angiocrine growth cues that support hepatocyte proliferation. Physiological liver regeneration would therefore depend on the proper inductive and proliferative functioning of liver SECs. Thus, uncovering the cellular mechanisms by which organisms recognize and respond to tissue damage remains an important step towards developing therapeutic strategies to promote organ regeneration. In this chapter, we demonstrate the mechanism by which tissue-specific subsets of endothelial cells promote organ regeneration, and further discuss the roles of physical forces and molecular signals in initiating and terminating angiocrine-mediated tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wozniak, M., Chen, C.S.: Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10(1), 34–43 (2009)

    Article  Google Scholar 

  2. Hou, B.: The role of polycystic kidney disease 1 (Pkd1) in raniofacial skeletal development and response to mechanical stress. HARVARD UNIVERSITY (2008)

    Google Scholar 

  3. Morris, H., Haycock, J.W., Reilly, G.C., Donald, E.I.: The role of mechanotransduction in bone tissue engineering. Eur. Cells Materi. 16(3), 84 (2008)

    Google Scholar 

  4. Parker, K.K., Ingber, D.E.: Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484), 1267–1279 (2007)

    Article  Google Scholar 

  5. Huang, C., Ogawa, R.: Mechanotransduction in bone repair and regeneration. FASEB J. 24(10), 3625–3632 (2010)

    Article  Google Scholar 

  6. Isaksson, H., Wilson, W., van Isaksson, C.C., Huiskes, R., Ito, K.: Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech. 39(8), 1507–1516 (2006)

    Article  Google Scholar 

  7. Adams, D.S., Keller, R., Koehl, M.A.: The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110, 115–130 (1990)

    Google Scholar 

  8. Keller, R.J., Jansa, S.: Xenopus gastrulation without a blastocoel roof. Dev. Dyn. 195, 162–176 (1992)

    Article  Google Scholar 

  9. Moore, S.W., Keller, R.E., Koehl, M.A.: The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121, 3131–3140 (1995)

    Google Scholar 

  10. Keller, R.D., Danilchik, M.: Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103, 193–209 (1988)

    Google Scholar 

  11. Fausto, N., Campbell, J.S., Riehle, K.J.: Liver regeneration. Hepatology 43(2 Suppl 1), S45–S53 (2006)

    Article  Google Scholar 

  12. Michalopoulos, G.: Liver regeneration. Mol. Pathol. Liver Dis. 5(2), 261–278 (2011)

    Article  Google Scholar 

  13. Thomson, R.Y., Clarke, A.M.: Role of portal blood supply in liver regeneration. Nature 208(5008), 392–393 (1965)

    Article  Google Scholar 

  14. Greene, A.K., Wiener, S., Puder, M., Yoshida, A., Shi, B., Perez-Atayde, A.R., Efstathiou, J.A., Holmgren, J., Adamis, A.P., Rupnick, M., Folkman, J., O’Reilly, M.S.: Endothelial-directed hepatic regeneration after partial hepatectomy. Ann. Surg. 237(4), 530–535 (2003)

    Google Scholar 

  15. Van Buren, G., Yang, AD., Dallas, NA., Gray, MJ., Lim, SJ., Xia, L., Fan, F., Somcio, R., Wu, Y., Hicklin, DJ., Ellis, LM.: Effect of molecular therapeutics on liver regeneration in a murine model. J. Clin. Oncol. 26(11), 1836–1842 (2008)

    Article  Google Scholar 

  16. LeCouter, J., Moritz, D.R., Li, B., Phillips, G.L., Liang, X.H., Gerber, H.P., Hillan, K.J., Ferrara, N.: Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299(5608), 890–893 (2003)

    Article  Google Scholar 

  17. Rozga, J., Jeppsson, B., Bengmark, S.: Portal branch ligation in the rat—reevaluation of a model. Am. J. Path. 125, 30–38 (1986)

    Google Scholar 

  18. Bilodeau, M., Aubry, M.C., Houle, R., Burnes, P.N., Ethier, C.: Evaluation of hepatocyte injury following partial ligation of the left portal vein. J. Hepatol. 30(1), 29–37 (1999)

    Article  Google Scholar 

  19. Li, C., Hu, Y., Mayr, M., Xu, Q.: Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J. Biol Chem. 274, 25273–25280 (1999)

    Article  Google Scholar 

  20. Mammoto, T., Ingber, D.E.: Mechanical control of tissue and organ development. Development 137(9), 1407–1420 (2010)

    Article  Google Scholar 

  21. Li, S., Huang, N.F., Hsu, S.: Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96(6), 1110–1126 (2005)

    Article  Google Scholar 

  22. Li, Y.S., Haga, H.J., Chien, S.: Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38(10), 1949–1971 (2005)

    Article  Google Scholar 

  23. Bershadsky, A.D., Balaban, N.Q., Geiger, B.: Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003)

    Article  Google Scholar 

  24. Baker, A.B.: Role of proteoglycans in vascular mechanotransduction. Mechanosensitivity Cells Tissues 4(3), 219–236 (2011)

    Google Scholar 

  25. Milovanova, T., Chatterjee, S., Hawkins, B.J., Hong, N., Sorokina, E.M., Debolt, K., Moore, J.S., Madesh, M., Fisher, A.B.: Caveolae are an essential component of the pathway for endothelial cell signaling associated with abrupt reduction of shear stress. Biochim. Biophys. Acta 1783(10), 1866–1875 (2008)

    Article  Google Scholar 

  26. Chatterjee, S., Chapman, K.E., Fisher, A.B.: Lung ischemia: a model for endothelial mechanotransduction. Cell Biochem. Biophys. 52(3), 125–138 (2008)

    Article  Google Scholar 

  27. Ngai, C., Yao, X.: Vascular responses to shear stress: the involvement of mechanosensors in endothelial cells. Open Circ. Vasc. J. 3, 85–94 (2010)

    Google Scholar 

  28. Shyu, K.-G.: Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin. Sci. 116, 377–389 (2009)

    Article  Google Scholar 

  29. Hsiai, T.K.: Mechanosignal transduction coupling between endothelial and smooth muscle cells: role of hemodynamic forces. Am. J. Physiol.—Cell Physiol. 294(3), C659–C661 (2008)

    Article  Google Scholar 

  30. Ando, J., Tsuboi, H., Korenaga, R., Takada, Y., Toyama, S.N., Miyasaka, M., Kamiya, A.: Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am. J. Physiol. 267(3 Pt 1), C679–C687 (1994)

    Google Scholar 

  31. Selzner, N., Selzner, M., Odermatt, B., Tian, Y., Van Rooijen, N., Clavien, P.A.: ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology 124(3), 692–700 (2003)

    Article  Google Scholar 

  32. Ohno, M., Cooke, J.P., Dzau, V.J., Gibbons, G.H.: Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. modulation by potassium channel blockade. J. Clin. Invest. 95(3), 1363–1369 (1995)

    Article  Google Scholar 

  33. Marsden, P.A., Heng, H.H., Scherer, S.W., Stewart, R.J., Hall, A.V., Shi, X.M., Tsui, L.C., Schappert, K.T.: Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J. Biol. Chem. 268(23), 17478–17488 (1993)

    Google Scholar 

  34. Zhang, Q., Chatterjee, S., Wei, Z., Liu, W.D., Fisher, A.B.: Rac and PI3 kinase mediate endothelial cell-reactive oxygen species generation during normoxic lung ischemia. Antioxid. Redox Signal 10(4), 679–689 (2008)

    Article  Google Scholar 

  35. Katsumi, A., Wayne, O.A., Eleni, T., Martin, A.S.: Integrins in mechanotransduction. J. Biol. Chem. 279(13), 12001–12004 (2004)

    Article  Google Scholar 

  36. Wang, Y., Miao, H., Li, S., Chen, K., Li, Y., Yuan, S., Shyy, J., Chien, S.: Interplay between integrins and FLK-1 in shear stress-induced signaling. Am. J. Physiol. Cell. Physiol. 283, 1540–1547 (2002)

    Article  Google Scholar 

  37. Chen, K., Li, Y.S., Kim, M., Li, S., Yuan, S., Chen, S., Shyy, J.: Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274, 18393–18400 (1999)

    Article  Google Scholar 

  38. Tzima, E., del Pozo, M.A., Schwartz, M.: Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20, 4639–4647 (2001)

    Article  Google Scholar 

  39. Joukov, V., Pajusola, K., Kaipainen, A., Saksela, O., Alitalo, K., Olofsson, B., von Euler, G., Orpana, A., Pettersson, R.F., Eriksson, U.: Vascular endothelial growth factor B a novel growth factor for endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 93(6), 2567–2581 (1996)

    Google Scholar 

  40. Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N., Alitalo, K.: A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15(2), 290–298 (1996)

    Google Scholar 

  41. Stannard, A.K., Rohit, K., Evans, J.M., Sofra, V., Holmes, D.J., Zachary, I.: Vascular endothelial growth factor synergistically enhances induction of E-selectin by tumor necrosis factor-alpha. Arterioscler. Thromb. Vasc. Biol. 27(3), 494–502 (2007)

    Article  Google Scholar 

  42. Tzima, E., Mohamed, I.-T., Kiosses, W.B., Dejana, E., Schultz, D.A., Engelhardt, B., Cao, G., DeLisser, H., Schwartz, M.A.: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057), 426–431 (2005)

    Article  Google Scholar 

  43. Hua, Z., Lv, Q., Ye, W., Wong, C.-K.A., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B.B., Zhang, Y.: MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1, e116 (2006)

    Article  Google Scholar 

  44. Poliseno, L., et al.: MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068–3071 (2006)

    Article  Google Scholar 

  45. Bartel, D.P.: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  46. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R.: MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)

    Article  Google Scholar 

  47. Urbich, C., Angelika, K., Angelika, S.: Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res. 79, 581–588 (2008)

    Article  Google Scholar 

  48. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., Fox, H., Doebele, C., Ohtani, K., Chavakis, E., Potente, M., Tjwa, M., Zeiher, A., Dimmeler, S.: MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009)

    Article  Google Scholar 

  49. Parmacek M.S.: MicroRNA-modulated targeting of vascular smooth muscle cells. J. Clin. Invest. 119, 2526–2528 (2009)

    Article  Google Scholar 

  50. Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.L., Segnalini, P., Gu, Y., Dalton, N.D., Elia, L., Latronico, M.V., Høydal, M., Autore, C., Russo, M.A., Dorn, G.W. 2nd, Ellingsen, O., Ruiz-Lozano, P., Peterson, K.L., Croce, C.M., Peschle, C., Condorelli, G.: MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007)

    Article  Google Scholar 

  51. Suárez, Y., Carlos, F.-H., Pober, J.S., Sessa, W.C.: Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ. Res. 100, 1164–1173 (2007)

    Article  Google Scholar 

  52. Kuehbacher, A., Urbich, C., Dimmeler, S.: Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol. Sci. 29, 12–15 (2008)

    Article  Google Scholar 

  53. Shilo, S., Roy, S., Khanna, S., Sen, C.K.: Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 471–477 (2008)

    Article  Google Scholar 

  54. Wang, K.-C., Lana, X.G., Angela, Y., Phu, N., Andrew, T., Shankar, S., Nanping, W., John, Y.J.S., Shuan, L., Shu, C.: Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. PNAS 107(7), 3234–3239 (2009)

    Article  Google Scholar 

  55. Nicoli, S., Clive, S., Paul, W., Adam, H., Kevin, E.F., Lawson, N.D.: MicroRNA-mediated integration of haemodynamics and Vegf signaling during angiogenesis. Nature 464(7292), 1196–1200 (2010)

    Article  Google Scholar 

  56. Malik, R., Selden, C., Hodgson, H.: The role of non parenchymal cells in liver growth. Semin. Cell Dev. Biol. 13, 425–431 (2002)

    Article  Google Scholar 

  57. Blouin, A., Bolender, R., Weidel, E.R.: Distribution of organelles and membranes between hepatocytes and non-hepatocytes in the rat liver parenchyma. J. Cell Biol. 72, 441–455 (1977)

    Article  Google Scholar 

  58. Butler, J., Nolan, D.J., Vertes, E., Varnum-Finney, B., Kobayashi, H., Hooper, A., Seandel, M., Shido, K., White, I., Kobayashi, M., Witte, L., May, C., Shawber, C., Kimura, Y., Kitajewski, J., Rosenwaks, Z., Bernstein, J., Rafi, S.: Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 1–14 (2010)

    Article  Google Scholar 

  59. Butler, J.M., Kobayashi, H., Rafii, S.: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10(2), 138–146 (2010)

    Article  Google Scholar 

  60. McDonald, B., McAvoy, E.F., Lam, F., Gill, V., de la Motte, C., Savani, R.C., Kubes, P.: Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J. Exp. Med. 205(4), 915–927 (2008)

    Article  Google Scholar 

  61. Klein, D., Demory, A., Peyre, F., Kroll, J., Augustin, H.G., Helfrich, W., Kzhyshkowska, J., Schledzewski, K., Arnold, B., Goerdt, S.: Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology 47(3), 1018–1031 (2008)

    Article  Google Scholar 

  62. Zaret, K.S., Grompe, M.: Generation and regeneration of cells of the liver and pancreas. Science 322(5907), 1490–1494 (2008)

    Article  Google Scholar 

  63. Michalopoulos, G.K., DeFrances, M.C.: Liver regeneration. Science 276(5309), 60–66 (1997)

    Article  Google Scholar 

  64. Huh, C.G., Factor, V.M., Sánchez, A., Uchida, K., Conner, E.A., Thorgeirsson, S.S.: Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc. Natl. Acad. Sci. U S A 101(13), 4477–4482 (2004)

    Article  Google Scholar 

  65. Ding, B.S., Nolan, D.J., Butler, J.M., James, D., Babazadeh, A.O., Rosenwaks, Z., Mittal, V., Kobayashi, H., Shido, K., Lyden, D., Sato, T.N., Rabbany, S.Y., Rafii, S.: Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321), 310–315 (2010)

    Article  Google Scholar 

  66. Greenbaum, L.E., Li, W., Cressman, D.E., Peng, Y., Ciliberto, G., Poli, V., Taub, R.: CCAAT enhancer- binding protein beta is required for normal hepatocyte proliferation in mice after partial hepatectomy. J. Clin. Invest. 102(5), 996–1007 (1998)

    Article  Google Scholar 

  67. Friedman, S.L.: Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88(1), 125–172 (2008)

    Article  Google Scholar 

  68. Hooper, A.T., Butler, J.M., Nolan, D.J., Kranz, A., Lida, K., Kobayashi, M., Kopp, H.G., Shido, K., Petit, I., Yanger, K., James, D., Witte, L., Zhu, Z., Wu, Y., Pytowski, B., Rosenwaks, Z., Mittal, V., Sato, T.N., Rafii, S.: Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4(3), 263–274 (2009)

    Article  Google Scholar 

  69. Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257 (2000)

    Article  Google Scholar 

  70. Lyden, D., Young, AZ., Zagzag, D., Yan, W., Gerald, W., O'Reilly, R., Bader, BL., Hynes, RO., Zhuang, Y., Manova, K., Benezra, R.: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401(6754), 670–677 (1999)

    Article  Google Scholar 

  71. Nam, H.S., Benezra, R.: High levels of Id1 expression define B1 type adult neural stem cells. Cell Stem Cell 5(5), 515–526 (2009)

    Article  Google Scholar 

  72. Follenzi, A., Benten, D., Novikoff, P., Faulkner, L., Raut, S., Gupta, S.: Transplanted endothelial cells repopulate the liver endothelium and correct the phenotype of hemophilia A mice. J. Clin. Invest.118(3), 935–945 (2008)

    Google Scholar 

  73. Hill, E., Boontheekul, T., Mooney, D.J.: Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl. Acad. Sci. U S A 103(8), 2494–2499 (2006)

    Article  Google Scholar 

  74. Eipel, C., Kerstin, A., Brigitte, V.: Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol. 16(48), 2046–2057 (2010)

    Article  Google Scholar 

  75. Schwartz, M.A.: Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol. 2(12), a005066 (2010)

    Article  Google Scholar 

  76. Ding, B.S., Nolan, D.J., Guo, P., Babazadeh, A.Q., Cao, Z., Rosenwaks, Z., Crystal, R.G., Simons, M., Sato, T.N., Worgall, S., Shido, K., Rabbany, S.Y., Rafii, S.: Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147(3), 539–553 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Y. Rabbany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rabbany, S.Y., Ding, BS., Larroche, C., Rafii, S. (2013). Mechanosensory Pathways in Angiocrine Mediated Tissue Regeneration. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics