Skip to main content

Robustness of Complex Adaptive Logistics Systems: Effects of Autonomously Controlled Heuristics in a Real-World Car Terminal

  • Conference paper
  • First Online:
Robust Manufacturing Control

Abstract

Logistics systems have to cope with different challenges like unforeseeable machine failures leading to an increase of dynamics and complexity. Accordingly, a system’s robustness (i.e. the ability to resist against a number of endangering environmental influences and the ability to restore its operational reliability after being damaged) might be decreased. Thus, this paper aims to answer the following research question: How do selected exemplarily heuristics (Minimum Queue-length Estimation, Minimum Cumulative Processing, Simple Rule-based, Holonic, Ant Pheromone, and Neural Net) contribute to a real world Hamburg Harbour Car Terminal’s robustness? Thereby, the research focus in this investigation is on throughput time. As a main result it could be shown that all selected heuristics could contribute to a positive development of the system’s robustness in case of machine failures. Thus, from a practical view potentials for the improvement of real-world scenarios might be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this baseline simulation accuracy (docking) test and application of the NN model, we ignore all parking waiting times except parking queues directly affecting the car-flows through specific treatment stations, since none of the heuristics involve any parking waits before cars get to DP1.

  2. 2.

    The Design Option ‘Neural Net’ is selected, since it is the first CALS design option of a bunch of consecutive design options, that require all the preceding design options [7].

  3. 3.

    For an overview of further design options of CALS beside the Neural Net see [7].

References

  1. Klibi, W., Martel, A., Guitouni, A.: The design of robust value-creating supply chain networks: A critical review. Eur. J. Oper. Res. 203(2), 283–293 (2010)

    Article  MATH  Google Scholar 

  2. Kouvelis, C., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, Berlin (1997)

    MATH  Google Scholar 

  3. Snyder, L., Daskin, M.: A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 174(1), 38–53 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrionuevo, A., Deutsch, C.: A distribution system brought to its knees. New York Times, Sept 1, (2005)

    Google Scholar 

  5. Mouawad, J.: Katrina’s shock to the system. The New York Times, Sept 4, (2005)

    Google Scholar 

  6. Wycisk, C., McKelvey, B., Hülsmann, M.: Smart parts’ supply networks as complex adaptive systems—analysis and implications. Int. J. Phys. Distribution Logis. Manage. 38(2), 108–125 (2008)

    Article  Google Scholar 

  7. McKelvey, B., Wycisk, C., Hülsmann, M.: Designing an electronic auction market for complex ‘smart parts’ logistics: Options based on LeBaron’s computational stock market. Int. J. Prod. Econ. 120(2), 476–494 (2009)

    Article  Google Scholar 

  8. Klaus, P., Kille, C.: Die Top 100 der Logistik—Marktgrößen. Marktsegmente und Marktführer in der Logistik—Dienstleistungswirtschaft, Hamburg (2006)

    Google Scholar 

  9. Mason, R.B.: The external environment’s effect on management and strategy- a complexity theory approach. Manag. Decis. 45(1), 10–28 (2007)

    Article  Google Scholar 

  10. Sydow, J.: Zum Management von Logistiknetzwerken. Logistik Manage. 4(4), (2002)

    Google Scholar 

  11. Meepetchdee, Y., Shah, N.: Logistical network design with robustness and complexity considerations. Int. J. Phys. Distribution Logis. Manage. 37(3), 201–222 (2007)

    Article  Google Scholar 

  12. Hülsmann, M., Cordes, P.: Autonomous co-operation and control in complex adaptive logistic systems—contribution and limitations for the innovation capability of international supply networks. In: Zhou, J. (eds.): COMPLEX 2009, Part I, LNICST 4—Proceedings of the First International Conference on Complex Sciences: Theory and Application. Springer, Berlin, pp. 1023–1032 (2009)

    Google Scholar 

  13. Hülsmann, M., Scholz-Reiter, B., Austerschulte, L., de Beer, C., Grapp, J.: Autonomous cooperation—a capable way to cope with external risiks in international supply networks? In: Pawar, K.S., Lalwani, C.S., de Carvalho, J.C., Muffatto, M. (eds.) Proceedings of the 12th International Symposium on Logistics (12th ISL), Loughborough, pp. 172–178 (2007)

    Google Scholar 

  14. Windt, K., Hülsmann, M.: Perspectives on initial ideas and conceptual components of autonomous co-operation and control. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Cooperation and Control: The Impact of Autonomy on Management, Information, Communication, and Material Flow, Berlin (2007)

    Google Scholar 

  15. Hülsmann, M., Windt, K.: Development of a terminological system of autonomous cooperation, in: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Co-operation—The Impact of Autonomy on Management, Information, Communication and Material Flow, Bremen (2006)

    Google Scholar 

  16. Hülsmann, M., Scholz-Reiter, B., deBeer, C., Austerschulte, L.: Effects of autonomous cooperation on the robustness of international supply networks—contributions and limitations for the management of external dynamics in complex systems. In: Haasis, H.-D., Kreowski, H.-J., Scholz-Reiter, B. (eds.) Dynamics in Logistics—Proceedings of the 1st International Conference on Dynamics in Logistics. Springer, Berlin, pp. 241–250 (2008)

    Google Scholar 

  17. Hülsmann, M., Korsmeier, B., Illigen, C., Cordes, P.: autonomous co-operation of “smart-parts”–contributions and limitations to the robustness of complex adaptive logistics systems. In: Proceedings of the 2nd International Conference on Dynamics in Logistics (LDIC), Universität Bremen, Bremen (2009)

    Google Scholar 

  18. Windt, K., Becker, T., Kolev, I.: 2010. A comparison of the logistics performance of autonomous control methods in production logistics. In: Sihn, W., Kuhlang, P. (eds.) Sustainable Production and Logistics in Global Networks. Proceedings of the 43rd CIRP International Conference on Manufacturing Systems, Vienna, pp. 576–583 (2010)

    Google Scholar 

  19. Windt, K., Becker, T., Jeken, O., Gelessus, A.: A Classification Pattern for Autonomous Control Methods in Logistics. CRC, University of Bremen, Bremen (2010)

    Google Scholar 

  20. Chopra, S., Sodhi, M.S.: Managing risk to avoid supply-chain breakdown. MIT Sloan Manage. Rev. 46, 52–61 (2004)

    Google Scholar 

  21. Helferich, O.K., Cook, R.L.: Securing the Supply Chain. Council of Logistics Management (CLM) (2002)

    Google Scholar 

  22. Sheffi, Y.: The Resilient Enterprise: Overcoming Vulnerability for Competitive Advantage. MIT Press Books, Cambridge (2005)

    Google Scholar 

  23. Sweet, K.: China earthquake hits home for US companies. Fox Business, May 12 (2008)

    Google Scholar 

  24. Christopher, M., Peck, H.: 2004. Building the resilient supply chain. Int. J. Logistics Manage. 15(2), 1–13 (2004)

    Google Scholar 

  25. Tang, C.: Robust strategies for mitigating supply chain disruptions. Int. J. Logis. Res. Appl. 9, 33–45 (2006)

    Article  Google Scholar 

  26. Kleindorfer, P.R., Saad, G.H.: Managing disruption risks in supply chains. Prod. Oper. Manage. 14(1), 53–68 (2005)

    Article  Google Scholar 

  27. Philipp, T., de Beer, C., Windt, K., Scholz-Reiter, B.: Evaluation of autonomous logistic processes—Analysis of the influence of structural complexity. In: Hülsmann, M., Windt, K. (eds.), Understanding Autonomous Cooperation and Control in Logistics—The Impact on Management, Information and Communication and Material Flow. Springer, Berlin, pp. 303–324 (2007)

    Google Scholar 

  28. Scholz-Reiter, B., Freitag, M., de Beer, C., Jagalski, T.: The influence of production networks’ complexity on the performance of autonomous control methods. In: Teti, R. (ed.): Intelligent Computation in Manufacturing Engineering 5. Proceedings of the 5th CIRP International Seminar on Computation in Manufacturing Engineering (CIRP ICME ‘06), Naples, 317–320 (2006)

    Google Scholar 

  29. Armbruster, D., de Beer, C., Freitag, M., Jagalski, T., Ringhofer, C.: Autonomous control of production networks using a pheromone approach. Phys. A 363(1), 104–114 (2006)

    Article  Google Scholar 

  30. Markus, A., Kis Vancza, T., Monostori, L.: A market approach to holonic manufacturing. CIRP Ann. Manuf. Technol. 45(1), 433–436 (1996)

    Article  Google Scholar 

  31. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems. PROSA. Comput. Ind. 37(3), 255–274 (1998)

    Article  Google Scholar 

  32. Nyhuis, P., Wiendahl, H.P.: Fundamentals of Production Logistics: Theory, Tools and Applications. Springer, Berlin (2008)

    Google Scholar 

  33. Hülsmann, M., Scholz-Reiter, B., Austerschulte, L., Wycisk, C., de Beer, C.: Autonomous cooperation—a way to cope with critical incidents in International Supply Networks (ISN)? An Analysis of Complex Adaptive Logistic Systems (CALS) and their Robustness. In: 24th EGOS Colloquium. Upsetting Organizations, web-publication, (2008)

    Google Scholar 

  34. Hülsmann, M., Illigen, C., Korsmeier, B., Cordes, P.: Risks resulting from autonomous co-operation technologies in logistics. In: Li, Y., Desheng, W. (eds.) Proceedings of 2010 IEEE International Conference on Advanced Management Science, China, vol. 1, pp 422–426, (2010)

    Google Scholar 

  35. Hülsmann, M., Windt, K.: Changing paradigms in logistics—understanding the shift from conventional to autonomous cooperation and control. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Co-operation—The Impact of Autonomy on Management, Information, Communication and Material Flow, Bremen, (2006)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the German Research Foundation (DFG) as part of the Collaborative Research Centre 637 “Autonomous Cooperating Logistic Processes—A Paradigm Shift and its Limitations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Illigen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Illigen, C., Korsmeier, B., Hülsmann, M. (2013). Robustness of Complex Adaptive Logistics Systems: Effects of Autonomously Controlled Heuristics in a Real-World Car Terminal. In: Windt, K. (eds) Robust Manufacturing Control. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30749-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30749-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30748-5

  • Online ISBN: 978-3-642-30749-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics