Skip to main content

Quantum and Biocomputing – Common Notions and Targets

  • Chapter
Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

  • 7229 Accesses

Abstract

Biocomputing and quantum computing are both relatively novel areas of information processing sciences under the umbrella natural computing established in the late twentieth century. From the practical point of view one can say that in both bio and quantum paradigms, the purpose is to replace the traditional media of computing by an alternative. Biocomputing is based on an appropriate treatment of biomolecules, and quantum computing is based on the physical realization of computation on systems so small that they must be described by using quantum mechanics. The efficiency of the proposed biomolecular computing is based on massive parallelism, which is implementable by already existing technology for small instances. In a sense, also quantum computing involves parallelism. From time to time, there are proposals or attempts to create a uniform approach to both biocomputational and quantum parallelism. The main purpose of this article is the explain why this a very challenging task. For this aim, we present the usual mathematical formalism needed to speak about quantum computing and compare quantum parallelism to its biomolecular counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNA:

deoxyribonucleic acid

EPR:

Einstein–Podolsky–Rosen

NP:

neuritic plaque

RSA:

Rivest, Shamir, Adleman

References

  1. L.M. Adleman: Molecular computation of solutions to combinatorial problems, Science 266(11), 1021–1024 (1994)

    Article  Google Scholar 

  2. R.J. Lipton: DNA solution of hard computational problems, Science 268(5210), 542–545 (1995)

    Article  Google Scholar 

  3. M.L. Minsky, S.A. Papert: Perceptrons (MIT Press, Cambridge 1969)

    MATH  Google Scholar 

  4. P.W. Shor: Algorithms for quantum computation: Discrete log and factoring, Proc. 35th Annu. IEEE Symp. Found. Comput. Sci. (1994) pp. 20–22

    Google Scholar 

  5. A.M. Turing: On computable numbers, with an application to the entscheidungsproblem, Proc. Lond. Math. Soc. 2(42), 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  6. J. von Neumann: Thermodynamik quantummechanischer Gesamheiten, Nachr. Ges. Wiss. Gött. 1, 273–291 (1927)

    Google Scholar 

  7. J. von Neumann: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932)

    MATH  Google Scholar 

  8. P.A. Benioff: The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys. 22(5), 563–591 (1980)

    Article  MathSciNet  Google Scholar 

  9. P.A. Benioff: Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to turing machines, Int. J. Theor. Phys. 21(3/4), 177–202 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.P. Feynman: Simulating physics with computers, Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  11. D. Deutsch: Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. R. Soc. A 400, 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Deutsch: Quantum computational networks, Proc. R. Soc. A 425, 73–90 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Deutsch, R. Jozsa: Rapid solutions of problems by quantum computation, Proc. R. Soc. A 439, 553 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. D.R. Simon: On the power of quantum computation, Proc. 35th Annu. IEEE Symp. Found. Comput. Sci. (1994) pp. 116–123

    Google Scholar 

  15. E. Bernstein, U. Vazirani: Quantum complexity theory, SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clay Mathematics Institute: http://www.claymath.org/millennium/P_vs_NP/

  17. M. Hirvensalo: Quantum Computing, 2nd edn. (Springer, Berlin, Heidelberg 2004)

    Book  MATH  Google Scholar 

  18. M. Hirvensalo: Mathematics for quantum information processing. In: Handbook of Natural Computing, ed. by G. Rozenberg, T. Bäck, J. Kok (Springer, Berlin, Heidelberg 2011)

    Google Scholar 

  19. M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge 2000)

    MATH  Google Scholar 

  20. M. Hirvensalo: EPR Paradox and Bell Inequalities, Bulletin EATCS 92, 115–139 (2007)

    MathSciNet  MATH  Google Scholar 

  21. D. Bohm: Quantum Theory (Prentice-Hall, Englewood Cliffs 1951) pp. 614–619

    Google Scholar 

  22. A. Einstein, B. Podolsky, N. Rosen: Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777–780 (1935)

    Article  MATH  Google Scholar 

  23. J.S. Bell: On the Einstein–Podolsky–Rosen paradox, Physics 1, 195–200 (1964)

    Google Scholar 

  24. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J.G. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger: Free-space distribution of entanglement and single photons over 144 km, Nat. Phys. 3(7), 481–486 (2007)

    Article  Google Scholar 

  25. A. Barenco, C.H. Bennett, R. Cleve, D.P DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter: Elementary gates for quantum computation, Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  26. A. Kondacs, J. Watrous: On the power of quantum finite state automata, Proc. 38th Annu. Symp. Found. Comput. Sci. (1997) pp. 66–75

    Google Scholar 

  27. C. Moore, J.P. Crutchfield: Quantum automata and quantum grammars, Theor. Comput. Sci. 237(1/2), 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. C.H. Bennett: Logical reversibility of computation, IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Hirvensalo: Quantum automata with open time evolution, Int. J. Nat. Comput. Res. 1, 70–85 (2010)

    Article  Google Scholar 

  30. L.K. Grover: A fast quantum-mechanical algorithm for database search, Proc. 28th Annu. ACM Symp. Theory Comput. (1996) pp. 212–219

    Google Scholar 

  31. J. Kempe: Discrete quantum walks hit exponentially faster, Probab. Theory Relat. Fields 133(2), 215–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Kempe: Quantum random walks – an introductory overview, Contemp. Phys. 44(4), 307–327 (2003)

    Article  MathSciNet  Google Scholar 

  33. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev: Adiabatic quantum computation is equivalent to standard quantum computation, SIAM J. Comput. 37, 166–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. C.H. Papadimitriou: Computational Complexity (Addison-Wesley, Reading 1994)

    MATH  Google Scholar 

  35. R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. Wolf: Quantum lower bounds by polynomials, Journal ACM 48(4), 778–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Ambainis: Quantum lower bounds by quantum arguments, J. Comput. System Sci. 64(4), 750–767 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.I. Cirac, P. Zoller: Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  Google Scholar 

  38. I.L. Chuang, N. Gershenfeld, M. Kubinec: Experimental implementation of fast quantum searching, Phys. Rev. Lett. 80, 3408–3411 (1998)

    Article  Google Scholar 

  39. J.L. OʼBrien: Optical quantum computing, Science 318, 1567–1570 (2007)

    Article  Google Scholar 

  40. C. Negrevergne, T.S. Mahesh, C.A. Ryan, M. Ditty, F.-Y. Cyr-Racine, W. Power, N. Boulant, T. Havel, D.G. Cory, R. Laflamme: Benchmarking quantum control methods on a 12-qubit system, Phys. Rev. Lett. 96, 170501 (2006)

    Article  Google Scholar 

  41. S. Beauregard: Circuit for Shorʼs algorithm using 2n + 3 qubits, Quantum Inform. Comput. 3(2), 175–185 (2003)

    MathSciNet  MATH  Google Scholar 

  42. V.V. Nelayev, K.N. Dovzhik, V.V. Lyskouski: Quantum effects in biomolecular structures, Rev. Adv. Mater. Sci. 20, 42–47 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Hirvensalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Hirvensalo, M. (2014). Quantum and Biocomputing – Common Notions and Targets. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics