Skip to main content

Breeding for Heat-Stress Tolerance

  • Chapter
  • First Online:
Plant Breeding for Abiotic Stress Tolerance

Abstract

Heat stress is one of the main abiotic stresses that affect the production of various crops in many parts of the world. High temperatures alter several metabolic processes reducing photosynthesis activity that results mainly in grain yield losses. In this context, identifying heat-stress tolerant genotypes with high yield potential could contribute to increasing food production. This chapter deals with aspects of breeding for heat-stress tolerance. First, heat stress and the tolerance mechanisms are characterized along with the main characteristics associated with heat stress, such as cell membrane thermal stability, canopy temperature depression, and some morphological characteristics. It then presents genetic control and selection environments for heat-stress tolerance, breeding methods, and selection strategies. The chapter ends with information on the use of biotechnological tools applied to breeding for heat-stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assad ED, Pinto HS, Zullo J Jr, Marin FR, Pellegrino GQ, Evangelista SR, Otavian AF (2008) Aquecimento global e a nova geografia da produçao agrícola no Brasil. 1st edn. Brasília, Embaixada Britânica vol 1. p 82

    Google Scholar 

  • Assis JC (2011) Progresso genético em três ciclos de seleção recorrente para tolerância ao calor em trigo. Universidade Federal de Viçosa, Viçosa, 74 pp (Tese de doutorado)

    Google Scholar 

  • Benavente CAT, Pinto CAB, Figueiredo ICR, Ribeiro GHMR (2011) Repeatability of family means in early generations of potato under heat stress. Crop Breed Appl Biotechnol 11:330–337

    Google Scholar 

  • Benites FRG (2007) Seleção recorrente em batata visando tolerância ao calor. Universidade Federal de Lavras, Lavras, p 90 (Tese Doutorado)

    Google Scholar 

  • Benites FRG, Pinto CABP (2011) Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breed Appl Biotechnol 11:133–140

    Article  Google Scholar 

  • Blum A, Klueva N, Nguyen HT (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117–123

    Article  Google Scholar 

  • Burke JJ (2001) Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol Plant 112:167–170

    Article  CAS  Google Scholar 

  • Cargnin A, Souza MA, Dias DCF, Machado JC, Machado CG, Sofiatti V (2006) Tolerância ao estresse de calor em genótipos de trigo na fase de germinação. Bragantia 65:245–251

    Article  Google Scholar 

  • Cargnin A, Souza MA, Machado CG, Pimentel AJB (2007) Genetic gain prediction for wheat with different selection criteria. Crop Breed Appl Biotechnol 7:334–339

    Google Scholar 

  • Dias AS, Lidon FC (2009) Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J Agron Crop Sci 195:137–147

    Article  Google Scholar 

  • Fokar M, Nguyen HT, Blum A (1998) Heat tolerance in spring wheat. I. Estimating cellular thermotolerance and its heritability. Euphytica 104:1–8

    Article  Google Scholar 

  • Garcia AAF, Souza Júnior CL (1999) Comparação de índices de seleção não paramétricos para a seleção de cultivares. Bragantia 58:253–267

    Article  Google Scholar 

  • Geraldi IO (1997) Seleción recurrente em el mejoramiento de plantas. In: Guimarães EP (ed) Seleción recurrente em arroz. Centro Internacional de Agricultura Tropical, Cali, pp 3–11

    Google Scholar 

  • Giordano LB, Boiteux LS, Silva JBC, Carrijo OA (2005) Seleção de linhagens com tolerância ao calor em germoplasma de tomateiro coletado na região Norte do Brasil. Horticultura Brasileira 23:105–107

    Article  Google Scholar 

  • Hall AE (1990) Breeding for heat tolerance—an approach based on whole-plant physiology. HortScience 25:17–19

    Google Scholar 

  • Hall AE (1992) Breeding for heat tolerance. Plant Breed Rev 10:129–168

    Google Scholar 

  • Hall AE (2011a) Heat stress and its impact. Plantstress. http://www.plantstress.com/Articles/index.asp. Accessed 26 Febr 2011

  • Hall AE (2011b) The mitigation of heat stress. Plantstress. http://www.plantstress.com/Articles/index.asp. Accessed 26 Febr 2011

  • Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28:476–490

    PubMed  CAS  Google Scholar 

  • Hong B, Ma C, Yang Y, Wang T, Yamaguchi-Shinozaki K, Gao J (2009) Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol Biol 70:231–240

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim AMH, Quick JS (2001) Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability. Crop Sci 41:1405–1407

    Article  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  PubMed  CAS  Google Scholar 

  • Machado JC, Souza MA, Oliveira DM, Cargnin A, Pimentel AJB, Assis JC (2010) Recurrent selection as breeding strategy for heat tolerance in wheat. Crop Breed Appl Biotechnol 10:9–15

    Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  PubMed  CAS  Google Scholar 

  • Maich RH, Gaido ZA, Manera GA, Dubois ME (2000) Two cycles of recurrent selection for grain yield in bread wheat: direct effect and correlated responses. Agriscientia 17:35–39

    Google Scholar 

  • Menezes CB, Pinto CABP, Lambert ES (2001) Combining ability genotypes for cool and warm seasons in Brazil. Crop Breed Appl Biotechnol 1:145–157

    Google Scholar 

  • Merlino M, Leroy P, Chambon C, Branlard G (2009) Mapping and proteomic analysis of albumin and globulin proteins in hexaploid wheat kernels (Triticum aestivum L.). Theor Appl Genet 118:1321–1337

    Article  PubMed  CAS  Google Scholar 

  • Mitra R, Bhatia CR (2008) Bioenergetic cost of heat tolerance in wheat crop. Curr Sci 94:1049–1053

    CAS  Google Scholar 

  • Moffatt JM, Sears RG, Paulsen GM (1990) Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence. Crop Sci 30:881–885

    Article  CAS  Google Scholar 

  • Mohammed AR, Tarpley L (2009) Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci 49:313–322

    Article  Google Scholar 

  • Mohammadi V, Zali AA, Bihamta MR (2008) Mapping QTLS for heat tolerance in wheat. J Agric Sci Technol 10:261–267

    Google Scholar 

  • Oliveira DM (2008) Seleção em populações de trigo visando tolerância ao estresse de calor. Universidade Federal de Viçosa, Viçosa, 60 pp (Dissertação de Mestrado)

    Google Scholar 

  • Pesek J, Baker RJ (1969) Desired improvement in relation to selection indices. Can J Plant Sci 1:215–274

    Google Scholar 

  • Petkova V, Denev I, Cholakov D, Porjazov I (2007) Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Hortic Sci 111:101–106

    Article  CAS  Google Scholar 

  • Porter DR, Nguyen HT, Burker JJ (1994) Quantifying acquired thermal tolerance in winter wheat. Crop Sci 34:1686–1689

    Article  Google Scholar 

  • Ramalho MAP (1997) Melhoramento do feijoeiro. In: Simpósio sobre atualizaçao em genética e 684 melhoramento de plantas, Anais. Lavras, UFLA, pp 167–196

    Google Scholar 

  • Reynolds MP, Nagarajan S, Razzaque MA, Ageeb OAA (2001) Heat tolerance. In: Reynolds MP, Ortiz-Monasterio JI, Mcnab A (eds) Application of physiology in wheat breeding. CIMMYT, México, pp 124–135

    Google Scholar 

  • Saadalla MM, Quick JS, Shanahan JF (1990) Heat tolerance in winter wheat. II. Membrane thermostability and field performance. Crop Sci 30:1248–1251

    Article  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14:155–166

    Article  CAS  Google Scholar 

  • Smith HF (1936) A discriminant function for plant selection. Ann Eugen 7:240–250

    Google Scholar 

  • Sousa CNA (1997) Relação das cultivares comerciais de trigo no Brasil de 1922 a 1997. EMBRAPA/CNPT, Passo Fundo p 46

    Google Scholar 

  • Souza MA, Ramalho MAP (2001) Controle genético e tolerância ao estresse de calor em populações híbridas e em cultivares de trigo. Pesquisa Agropecuária Brasileira 36:1245–1253

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Williams JS (1962) The evaluation of a selection index. Biometrics 18:375–393

    Article  Google Scholar 

  • Xu Y, Zhan C, Huang B (2011) Heat shock proteins in association with heat tolerance in grasses. Int J Proteomics 2011:1–11

    Article  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica 126:185–193

    Article  CAS  Google Scholar 

  • Yildirim M, Bahar B (2010) Responses of some wheat genotypes and their F2 progenies to salinity and heat stress. Sci Res Essays 5:1734–1741

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacil Alves de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Souza, M.A., Pimentel, A.J.B., Ribeiro, G. (2012). Breeding for Heat-Stress Tolerance. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_9

Download citation

Publish with us

Policies and ethics