Skip to main content

Study of Diffusion in a One-Dimensional Lattice-Gas Model of Zeolites: The Analytical Approach and Kinetic Monte Carlo Simulations

  • Chapter
  • First Online:
Numerical Analysis of Heat and Mass Transfer in Porous Media

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 27))

  • 2469 Accesses

Abstract

The diffusion of molecules adsorbed in a one-dimensional channel with side pockets is investigated in the framework of a one-dimensional lattice-gas model. The model can describe the molecules migration in some type of zeolites. We obtained the exact expression for the free energy of this model. Using the local equilibrium approximation we derived the analytical expressions for the diffusion coefficients. The concentration dependencies of the center-of-mass and Fickian diffusion coefficients are calculated for some representative values of the lateral interactions between molecules. The theoretical dependencies are compared with the numerical data obtained by the kinetic Monte Carlo simulations. The data obtained by the two completely different methods coincide amazingly well in the whole concentration and wide interaction regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ala-Nissila, T., Ferrando, R., Ying, S.C.: Adv. Phys. 51, 949–1078 (2002)

    Article  CAS  Google Scholar 

  2. Alexandrowicz, Z.: J. Stat. Phys. 13, 231 (1975)

    Article  Google Scholar 

  3. Arkhincheev, V.E.: Phys. A 280, 304 (2000)

    Article  Google Scholar 

  4. Baerlocher, C., Meier, W.M., Olson, D.H.: Atlas of zeolite framework types. http://www.iza-structure.org/databases/books/Atlas 5ed.pdf

  5. van Bekkum, H., Flanigen, E.M., Jansen, J.C. (eds.): Introduction to Zeolite Science and Practice. Elsevier, Amsterdam (1991)

    Google Scholar 

  6. Bhide, S.Y., Yashonath, S.: J. Chem. Phys. 111, 1658 (1999)

    Article  CAS  Google Scholar 

  7. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: J. Comput. Phys. 17, 10 (1975)

    Article  Google Scholar 

  8. Brandani, S., Ruthven, D.M., Kärger, J.: Zeolites 15, 494 (1995)

    Article  CAS  Google Scholar 

  9. Evans, M.G., Polanyi, M.: Trans. Faraday Soc. 31, 875 (1935)

    Article  CAS  Google Scholar 

  10. Eyring, H.: J. Chem. Phys. 3, 107 (1935)

    Article  CAS  Google Scholar 

  11. Combariza, A.F., Sastre, G., Corma, A.: J. Phys. Chem. C 113, 11246 (2009)

    Article  CAS  Google Scholar 

  12. Combariza, A.F., Sastre, G., Corma, A.: J. Phys. Chem. C 115, 875 (2011)

    Article  CAS  Google Scholar 

  13. Chandrasekhar, S.: Rev. Mod. Phys. 15(1), 1 (1943)

    Article  Google Scholar 

  14. Chumak, A.A., Tarasenko, A.: Surf. Sci. 91, 694 (1980)

    Article  CAS  Google Scholar 

  15. Danani, A., Ferrando, R., Scalas, E., Torri, M.: Int. J. Mod. Phys. B 11, 2217–2279 (1997)

    Article  CAS  Google Scholar 

  16. Forster, D.: Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions. Benjamin, Reading (1975)

    Google Scholar 

  17. Gupta, V., Nivarthi, S.S., McCormick, A.V., Davis, H.T.: Chem. Phys. Lett. 247, 596 (1995)

    Article  CAS  Google Scholar 

  18. Hahn, K., Kärger, J., Kukla, V.: Phys. Rev. Lett. 76, 2762 (1996)

    Article  CAS  Google Scholar 

  19. Harris, T.E.: J. Appl. Probab. 2, 323 (1965)

    Article  Google Scholar 

  20. Kärger, J., Ruthven, D.M.: Diffusion in Zeolites and Other Microporous Solids. Wiley, New York (1992)

    Google Scholar 

  21. Kärger, J.: In Single-File Diffusion in Zeolites in Molecular Sieves v.7. In: Karge, H.G., Weitkamp, J., Brandani, S. (eds.) Springer, Berlin (2008)

    Google Scholar 

  22. Kärger, J., et al.: Pure Appl. Chem. 61, 1875 (1989)

    Article  Google Scholar 

  23. Metropolis, N., Rosenbluth, A.W., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)

    Article  CAS  Google Scholar 

  24. Moore, J.D., et al.: Appl. Surf. Sci. 256, 5131 (2010)

    Article  CAS  Google Scholar 

  25. Novotny, M.A.: In: Annual Reviews of Computational Physics IX. Stauffer, D. (ed) (World Scientific, Singapore, 2001), p. 153. Also see at http://www.arxiv.org/cond-mat/ 010918

  26. Pikunic, J., Gubbins, K.E.: Eur. Phys. J. E 12, 35 (2003)

    Article  CAS  Google Scholar 

  27. N. Pottier, Nuovo Cimento 16 D (1994)

    Google Scholar 

  28. N. Pottier, Physica A 216 D (1995) 1

    Google Scholar 

  29. Reed, D.A., Ehrlich, G.: Surf. Sci. 102, 588 (1981)

    Article  CAS  Google Scholar 

  30. Tarasenko, A., Jastrabik, L., Muller, T.: Phys. Rev. B 75, 085401 (2007)

    Article  Google Scholar 

  31. Tarasenko, A., Jastrabik, L., Muller, T.: Phys. Rev. B 76, 134201 (2007)

    Article  Google Scholar 

  32. Tarasenko, A., Jastrabik, L.: J. Phys. C 20, 415210 (2008)

    Google Scholar 

  33. Tarasenko, A., Jastrabik, L.: Surf. Sci. 602, 2975 (2008)

    Article  CAS  Google Scholar 

  34. Tarasenko, A., Jastrabik, L.: Phys. A 388, 2109 (2009)

    Article  CAS  Google Scholar 

  35. Tarasenko, A., Jastrabik, L.: Phys. Chem. Chem. Phys. 11, 7690 (2009)

    Article  CAS  Google Scholar 

  36. Tarasenko, A., Jastrabik, L.: Phys. A 75, 085401 (2011)

    Google Scholar 

  37. Tarasenko, A., Jastrabik, L., Nieto, F., Uebing, C.: Phys. Chem. Chem. Phys. 1, 1583 (1999)

    Article  CAS  Google Scholar 

  38. Tarasenko, A., Nieto, F., Jastrabik, L., Uebing, C.: Eur. Phys. J. D 12, 311 (2000)

    Article  CAS  Google Scholar 

  39. Tarasenko, A., Jastrabik, L., Uebing, C.: Phys. Rev. B 57, 10166 (1998)

    Article  CAS  Google Scholar 

  40. Tarasenko, A., Jastrabik, L., Nieto, F., Uebing, C.: Phys. Rev. B 65, 075413 (2001)

    Article  Google Scholar 

  41. Tarasenko, A., Nieto, F., Jastrabik, L., Uebing, C.: Surf. Sci. 536, 1 (2003)

    Article  CAS  Google Scholar 

  42. Tunca, C., Ford, D.M.: Chem. Eng. Sci. 58, 3373 (2003)

    Article  CAS  Google Scholar 

  43. White, S.R., Barma, M.: J. Phys. A 17, 2995 (1984)

    Article  Google Scholar 

  44. Weiss, G., Havlin, S.: Phys. A 134, 474 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Operational Program Research and Development for Innovations–European Social Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic) and by grants TA01010517 of the TACR and P108/12/1941 of the GACR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tarasenko .

Editor information

Editors and Affiliations

Appendix

Appendix

We derive here the analytical expression for the diffusion coefficient for molecules performing the long jump successions. In the low concentration region \( \left( {\theta < p/(p + 1)} \right) \) all molecules occupy deep pocket sites. We need the probability of a molecule jump succession from some initial \( i \)th to the final \( f \)th \( d \) site. The molecule performs slow jump from the \( i \)th site, \( n \) fast jumps and occupies the \( f \)th site at the distance \( ma \) from the \( i \)th site. The probability of this succession is a product of the probabilities of the elementary migration acts: the probability of the first slow jump from the \( i \)th to the channel \( s \) site \( \nu {\text{exp}}( - \varepsilon_{p} ), \) the probability of the sequence \( n \) fast jumps \( W(n,m) \) and the probability to occupy a \( d \) site by the final jump \( w_{d} \). As we supposed that the probability for a fast jump is equal for all NN sites, then the probability to jump in the NN \( s \) site is \( w = [p(1 - \theta_{p} ) + 2]^{ - 1} . \) The probability to occupy a \( d \) site is \( w_{p} = p(1 - \theta_{p} )[p(1 - \theta_{p} ) + 2]^{ - 1} . \) The probability of the fast jump succession is simply the product of the fast jump rates \( w^{n} . \) The number of the different jump successions which transfer the molecule to a distance \( ma \) after \( n \) jumps is equal to

$$ \frac{n!}{{\left[ {\frac{1}{2}(n + m)} \right]!\left[ {\frac{1}{2}(n - m)} \right]!}} \equiv C_{(n + m)/2}^{{{\kern 1pt} n}} ,\quad \left| m \right| \le n, $$

where \( {\text{C}}_{k}^{{{\kern 1pt} n}} \) is the binomial coefficient.

The square of the length of this jump sequence \( L^{2} (n,m) \) is obviously equal to \( (ma)^{2} . \) To obtain the effective jump length \( L \) one should average over all sequences

$$ L^{2} = w_{p} a^{2} \sum\limits_{n = 0}^{\infty } w^{n} \sum\limits_{m = - n}^{n} m^{2} C_{(n + m)/2}^{{{\kern 1pt} n}} $$
(26)

The inner sum is equal \( n\;2^{{{\kern 1pt} n}} \) [13]. The infinite geometric series is easily calculated. The final result is the following simple expression

$$ L^{2} = w_{p} a^{2} \sum\limits_{n = 0}^{\infty } n(2w)^{n} = a^{2} /p(1 - \theta_{p} ) $$
(27)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasenko, A., Jastrabík, L. (2012). Study of Diffusion in a One-Dimensional Lattice-Gas Model of Zeolites: The Analytical Approach and Kinetic Monte Carlo Simulations. In: Delgado, J., de Lima, A., da Silva, M. (eds) Numerical Analysis of Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30532-0_3

Download citation

Publish with us

Policies and ethics