Skip to main content

Microscopic Theory of Fractional Quantum Hall Interferometers

  • Chapter
  • First Online:
Mesoscopic Quantum Hall Effect

Part of the book series: Springer Theses ((Springer Theses))

  • 1261 Accesses

Abstract

Interference of fractionally charged quasi-particles is expected to lead to Aharonov-Bohm oscillations with periods larger than the flux quantum. However, according to the Byers-Yang theorem, observables of an electronic system are invariant under an adiabatic insertion of a quantum of singular flux. We resolve this seeming paradox by considering a microscopic model of electronic interferometers made from a quantum Hall liquid at filling factor 1/m. We find that the coherent contribution to the average quasi-particle current through Mach-Zehnder interferometers does not vanish after summation over quasi-particle degrees of freedom. However, it acquires oscillations with the electronic period, in agreement with the Byers-Yang theorem. Importantly, our theory does not rely on any ad-hoc constructions, such as Klein factors, etc. When the magnetic flux through an Fabry-Perot interferometer is varied with a modulation gate, current oscillations have the quasi-particle periodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Very recently, unexpected values of quasi-particle charges, determined via shot noise measurements, have been reported in [8]. These results may indicate that the Fano factor of a weak backscattering current is not determined solely by the quasi-particle charge.

  2. 2.

    The use of the term “charge fractionalization” in this context is somewhat unfortunate, because, in contrast to the quasi-particle fractionalization, the corresponding process is completely classical in nature. In fact, it is very similar to the displacement current in electrical circuits.

  3. 3.

    Note, in particular, that the average values of physical observables are not determined solely by the energy spectrum of a system, but also by the matrix elements of the observables. Thus, one is not able to make a definitive conclusion on the periodicity of observables based on the consideration of the spectrum alone.

  4. 4.

    Note that the functional integration in Eq. (8.11) over \(\rho (z)\) is constrained to the domain \(\rho (z)\ge 0\).

  5. 5.

    It is expected that two-dimensional electrostatics for an ideal Coulomb plasma holds for \(1/\nu =m< 7\), while for larger “inverse temperature” \(m\) there is a tendency to Wigner crystallization [55].

  6. 6.

    To be precise, the operators (8.22) are not unitary if \(N\) and \(M\) are finite. However, in the thermodynamic limit (\(N,M\rightarrow \infty \)) these operators become unitary and satisfy the commutation relations (8.23).

  7. 7.

    This commutation relation follows form the definition of the derivative operator (8.28), which differs from the standard one.

  8. 8.

    On may check that solving the detailed balance equation with tunneling rates calculated with the amplitudes (8.54) and (8.55) leads to the distribution (8.69).

References

  1. K.v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Google Scholar 

  2. X.-G. Wen, Phys. Rev. B 41, 12838 (1990)

    Article  ADS  Google Scholar 

  3. J. Fröhlich, A. Zee, Nucl. Phys. B 364, 517 (1991)

    Article  ADS  Google Scholar 

  4. J. Fröhlich, T. Kerler, Nucl. Phys. B 354, 369 (1991)

    Article  ADS  Google Scholar 

  5. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  6. L. Saminadayar, D.C. Glattli, Y. Jin, B. Etienne, Phys. Rev. Lett. 79, 2526 (1997)

    Article  ADS  Google Scholar 

  7. R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Nature, 389, 162 (1997)

    Google Scholar 

  8. M. Dolev, Y. Gross, Y.C. Chung, M. Heiblum, V. Umansky, D. Mahalu, Phys. Rev. B 81, 161303(R) (2010)

    Google Scholar 

  9. Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  10. I. Safi, H.J. Schulz, Phys. Rev. B 52, 17040 (1995)

    Article  ADS  Google Scholar 

  11. H. Steinberg, G. Barak, A. Yacoby, L.N. Pfeiffer, K.W. West, B.I. Halperin, K. Le Hur, Nat. Phys. 4, 116 (2008)

    Article  Google Scholar 

  12. W. Ehrenberg, R.E. Siday, Proc. Phys. Soc. B 62, 8 (1949)

    Article  ADS  MATH  Google Scholar 

  13. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky, Phys. Rev. Lett. 96, 016804 (2006)

    Article  ADS  Google Scholar 

  15. I. Neder, F. Marquardt, M. Heiblum, D. Mahalu, V. Umansky, Nat. Phys. 3, 534 (2007)

    Article  Google Scholar 

  16. Y. Ji et al., Nat. (Lond.) 422, 415 (2003)

    Article  ADS  Google Scholar 

  17. P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly, Phys. Rev. B 76, 161309 (2007)

    Article  ADS  Google Scholar 

  18. P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly, Phys. Rev. Lett. 100, 126802 (2008)

    Article  ADS  Google Scholar 

  19. L.V. Litvin, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 75, 033315 (2007)

    Article  ADS  Google Scholar 

  20. L.V. Litvin, A. Helzel, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 78, 075303 (2008)

    Article  ADS  Google Scholar 

  21. E. Bieri, Correlation and Interference Experiments with Edge States, Ph.D. thesis, University of Basel (2007).

    Google Scholar 

  22. E. Bieri, M. Weiss, O. Goktas, M. Hauser, C. Schonenberger, S. Oberholzer, Phys. Rev. B 79, 245324 (2009)

    Article  ADS  Google Scholar 

  23. J.A. Simmons, H.P. Wei, L.W. Engel, D.C. Tsui, M. Shayegan, Phys. Rev. Lett. 63, 1731 (1989)

    Article  ADS  Google Scholar 

  24. J.A. Simmons, S.W. Hwang, D.C. Tsui, H.P. Wei, L.W. Engel, M. Shayegan, Phys. Rev. B 44, 12933 (1991)

    Article  ADS  Google Scholar 

  25. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. Lett. 95, 246802 (2005)

    Article  ADS  Google Scholar 

  26. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 72, 075342 (2005)

    Article  ADS  Google Scholar 

  27. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. Lett. 98, 076805 (2007)

    Article  ADS  Google Scholar 

  28. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 74, 115301 (2006)

    Article  ADS  Google Scholar 

  29. R.L. Willett, L.N. Pfeiffer, K.W. West, PNAS 106, 8853 (2009)

    Article  ADS  Google Scholar 

  30. R.L. Willett, L.N. Pfeiffer, K.W. West, arXiv:0911.0345

    Google Scholar 

  31. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 76, 155305 (2007)

    Article  ADS  Google Scholar 

  32. W. Zhou, F.E. Camino, V.J. Goldman, Phys. Rev. B 73, 245322 (2006)

    Article  ADS  Google Scholar 

  33. E.V. Sukhorukov, V.V. Cheianov, Phys. Rev. Lett. 99, 156801 (2007)

    Article  ADS  Google Scholar 

  34. J.T. Chalker, Y. Gefen, M.Y. Veillette, Phys. Rev. B 76, 085320 (2007)

    Article  ADS  Google Scholar 

  35. I. Neder, E. Ginossar, Phys. Rev. Lett. 100, 196806 (2008)

    Article  ADS  Google Scholar 

  36. S.-C. Youn, H.-W. Lee, H.-S. Sim, Phys. Rev. Lett. 100, 196807 (2008)

    Article  ADS  Google Scholar 

  37. I.P. Levkivskyi, E.V. Sukhorukov, Phys. Rev. B 78, 045322 (2008)

    Article  ADS  Google Scholar 

  38. I.P. Levkivskyi, A. Boyarsky, J. Fröhlich, E.V. Sukhorukov, Phys. Rev. B 80, 045319 (2009)

    Article  ADS  Google Scholar 

  39. D.L. Kovrizhin, J.T. Chalker, Phys. Rev. B 81, 155318 (2010)

    Article  ADS  Google Scholar 

  40. B. Rosenow, B.I. Halperin, Phys. Rev. Lett. 98, 106801 (2007)

    Article  ADS  Google Scholar 

  41. N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)

    Article  ADS  Google Scholar 

  42. C.L. Kane, M.P. Fisher, J. Polchinski, Phys. Rev. Lett. 72, 4129 (1994)

    Article  ADS  Google Scholar 

  43. K.T. Law, D.E. Feldman, Y. Gefen, Phys. Rev. B 74, 045319 (2006)

    Article  ADS  Google Scholar 

  44. V.V. Ponomarenko, D.V. Averin, Phys. Rev. Lett. 99, 066803 (2007)

    Article  ADS  Google Scholar 

  45. D.J. Thouless, Y. Gefen, Phys. Rev. Lett. 66, 806 (1991)

    Article  ADS  Google Scholar 

  46. Y. Gefen, D.J. Thouless, Phys. Rev. B 47, 10423 (1993)

    Article  ADS  Google Scholar 

  47. D.E. Feldman, A. Kitaev, Phys. Rev. Lett. 97, 186803 (2006)

    Article  ADS  Google Scholar 

  48. D.E. Feldman, Y. Gefen, A. Kitaev, K.T. Law, A. Stern, Phys. Rev. B 76, 085333 (2007)

    Article  ADS  Google Scholar 

  49. R. Guyon, P. Devillard, T. Martin, I. Safi, Phys. Rev. B 65, 153304 (2002)

    Article  ADS  Google Scholar 

  50. A. Boyarsky, V.V. Cheianov, O. Ruchayskiy, Phys. Rev. B 70, 235309 (2004)

    Article  ADS  Google Scholar 

  51. M. Marino, Chern-Simons Theory, Matrix Models, and Topological Strings (Oxford University Press, Oxford, 2005)

    Book  MATH  Google Scholar 

  52. V.V. Ponomarenko, D.V. Averin, Europhys. Lett. 61, 102 (2003)

    Article  ADS  Google Scholar 

  53. F.D.M. Haldane, E.H. Rezayi, Phys. Rev. Lett. 54, 237 (1985)

    Article  ADS  Google Scholar 

  54. F.D.M. Haldane, in Ref. [55], Chap. 8

    Google Scholar 

  55. R.E. Prange S.M. Girvin (ed.) The Quantum Hall Effect, (Springer, New York, 1987)

    Google Scholar 

  56. J. Fröhlich, The Fractional QHE, CS Theory, and Integral Lattices, in Proceedings of ICM’94, Basel, Boston, 1995, ed. by S.D. Chatteji. (Birkhäuser Verlag, Berlin, 1995)

    Google Scholar 

  57. A. Cappelli, C.A. Trugenberger, G.R. Zemba, Phys. Lett. B 306, 100 (1993)

    Article  ADS  Google Scholar 

  58. B. Blok, X.G. Wen, Phys. Rev. B 43, 8337 (1991)

    Article  ADS  Google Scholar 

  59. I. Kogan, A.M. Perelomov, G.W. Semenoff, Phys. Rev. B 45, 12084 (1992)

    Article  ADS  Google Scholar 

  60. V. Gurarie, C. Nayak, Nucl. Phys. B 506, 685 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. R. de Gail, N. Regnault, M.O. Goerbig, Phys. Rev. B 77, 165310 (2008)

    Article  ADS  Google Scholar 

  62. F.J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962)

    Google Scholar 

  63. O.E. Dial, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Nature 464, 566 (2010)

    Google Scholar 

  64. H.B. Chan, P.I. Glicofridis, R.C. Ashoori, M.R. Melloch, Phys. Rev. Lett. 79, 2867 (1997)

    Article  ADS  Google Scholar 

  65. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 52, 17393 (1995)

    Article  ADS  Google Scholar 

  66. C. de C. Chamon, E. Fradkin, Phys. Rev. B 56, 2012 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Levkivskyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levkivskyi, I. (2012). Microscopic Theory of Fractional Quantum Hall Interferometers. In: Mesoscopic Quantum Hall Effect. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30499-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30499-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30498-9

  • Online ISBN: 978-3-642-30499-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics