Skip to main content

Multi-Committer Threshold Commitment Scheme from Lattice

  • Conference paper
Intelligence and Security Informatics (PAISI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7299))

Included in the following conference series:

  • 1399 Accesses

Abstract

A multi-committer threshold commitment scheme is proposed based on the intractability assumption of Learning with errors problem. A group of committers consult a secret and divide it into several share pieces. Each member possesses a share piece. When de-committing, if a committer doesn’t want to admit or reveal the secret, he may refuse to open his piece, or even he may send an improper piece purposely when corrupted by a malicious adversary. If a majority of the committers agree to contribute their correct pieces, the receiver will accept the secret. The core idea is threshold secret share. This scheme satisfies the necessary properties, such as binding, hiding, non-malleability, and adaptive corruption chosen-plaintext security against malicious adversary. The commitment expansion factor is as small as O(log2 q) so as to communicate efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischlin, M., Fischlin, R.: Efficient Non-malleable Commitment Schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and Non-interactive Non-malleable Commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Zhang, Z.Y., Cao, Z.F., Ding, N., Ma, R.: Non-malleable Statistically Hiding Commitment from Any One-Way Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 303–318. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canetti, R., Goldwasser, S.: An Efficient Threshold Public Key Cryptosystem Secure against Adaptive Chosen Ciphertext Attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

    Google Scholar 

  6. Libert, B., Yung, M.: Adaptively Secure Non-interactive Threshold Cryptosystems. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 588–600. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Bendlin, R., Damgård, I.: Threshold Decryption and Zero-Knowledge Proofs for Lattice-Based Cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: Proceedings of 37th Annual ACM Symposium on Theory of Computing-STOC 2005, pp. 84–93. ACM, New York (2005)

    Chapter  Google Scholar 

  9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing-STOC 2008, pp. 197–206. ACM, New York (2008)

    Google Scholar 

  10. Peikert, C.: Public-Key Cryptosystems from the Worst-case Shortest Vector Problem. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing-STOC 2009, pp. 333–342. ACM, New York (2009)

    Chapter  Google Scholar 

  11. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A Group Signature Scheme from Lattice Assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Google Scholar 

  15. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, W., Yang, B., Huang, Q., Ma, S., Li, X. (2012). Multi-Committer Threshold Commitment Scheme from Lattice. In: Chau, M., Wang, G.A., Yue, W.T., Chen, H. (eds) Intelligence and Security Informatics. PAISI 2012. Lecture Notes in Computer Science, vol 7299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30428-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30428-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30427-9

  • Online ISBN: 978-3-642-30428-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics