Skip to main content

Methods to Prove Koszulity of an Operad

  • Chapter
Algebraic Operads

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 346))

  • 3244 Accesses

Abstract

This chapter extends to the operadic level the various methods, obtained in Chap. 4, to prove that algebras are Koszul. They rely either on rewriting systems, PBW and Gröbner bases, distributive laws (Diamond Lemma), or combinatorics (partition poset method). The notion of shuffle operad plays a key role in this respect. We also introduce the Manin products constructions for operads.

Nous voulons, tant ce feu nous brûle le cerveau, Plonger au fond du gouffre, Enfer ou Ciel, qu’importe? Au fond de l’Inconnu pour trouver du nouveau!

Charles Baudelaire

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Arone and M. Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999), no. 3, 743–788.

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Baclawski, Homology and combinatorics of ordered sets, Ph.D. thesis, Harvard Univ., Cambridge, Mass., 1976.

    Google Scholar 

  3. J. C. Baez and A. S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ. 12 (2004), 492–538 (electronic).

    MathSciNet  MATH  Google Scholar 

  4. Jon Beck, Distributive laws, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Springer, Berlin, 1969, pp. 119–140.

    Chapter  Google Scholar 

  5. A. Björner, A. M. Garsia, and R. P. Stanley, An introduction to Cohen-Macaulay partially ordered sets, Ordered sets (Banff, Alta., 1981), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 83, Reidel, Dordrecht, 1982, pp. 583–615.

    Chapter  Google Scholar 

  6. D. V. Borisov and Y. I. Manin, Generalized operads and their inner cohomomorphisms, Geometry and dynamics of groups and spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 247–308.

    Chapter  Google Scholar 

  7. Michael Ching, Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol. 9 (2005), 833–933.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), no. 1, 203–242.

    Article  MathSciNet  MATH  Google Scholar 

  9. —, Relating two Hopf algebras built from an operad, Int. Math. Res. Not. IMRN (2007), no. 24.

    Google Scholar 

  10. P.-L. Curien, Operads, clones and distributive laws, Proc. Int. Conf., in Nankai Series in Pure, Applied Mathematics and Theoretical Physics 9 (2012), 25–49.

    Google Scholar 

  11. V. Dotsenko and A. Khoroshkin, Character formulas for the operad of a pair of compatible brackets and for the bi-Hamiltonian operad, Funktsional. Anal. i Prilozhen. 41 (2007), no. 1, 1–22, 96.

    Article  MathSciNet  MATH  Google Scholar 

  12. —, Gröbner bases for operads, Duke Math. J. 153 (2010), no. 2, 363–396.

    Article  MathSciNet  MATH  Google Scholar 

  13. Vladimir Dotsenko, An operadic approach to deformation quantization of compatible Poisson brackets. I, J. Gen. Lie Theory Appl. 1 (2007), no. 2, 107–115 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Ebrahimi-Fard and L. Guo, On products and duality of binary, quadratic, regular operads, J. Pure Appl. Algebra 200 (2005), no. 3, 293–317.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. D. Farmer, Cellular homology for posets, Math. Japon. 23 (1978/79), no. 6, 607–613.

    MathSciNet  Google Scholar 

  16. T. F. Fox and M. Markl, Distributive laws, bialgebras, and cohomology, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, Amer. Math. Soc., Providence, RI, 1997, pp. 167–205.

    Chapter  Google Scholar 

  17. —, Koszul duality of operads and homology of partition posets, in “Homotopy theory and its applications (Evanston, 2002)”, Contemp. Math. 346 (2004), 115–215.

    Article  MathSciNet  Google Scholar 

  18. V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Ginzburg and M. Kapranov, Erratum to: “Koszul duality for operads”, Duke Math. J. 80 (1995), no. 1, 293.

    Article  MathSciNet  MATH  Google Scholar 

  20. —, A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math. 131 (2010), no. 1-2, 87–110.

    Article  MathSciNet  MATH  Google Scholar 

  21. —, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006), no. 1, 1–18.

    Article  MathSciNet  Google Scholar 

  22. J.-L. Loday and M. O. Ronco, Trialgebras and families of polytopes, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 369–398. MR 2066507 (2006e:18016)

    Chapter  Google Scholar 

  23. —, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 307–323.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Méndez, Monoides, c-monoides, especies de Möbius y coàlgebras, Ph.D. thesis, Universidad Central de Venezuela, http://www.ivic.gob.ve/matematicas/?mod=mmendez.htm, 1989.

  25. —, Operads, deformation theory and F-manifolds, Frobenius manifolds, Aspects Math., E36, Vieweg, Wiesbaden, 2004, pp. 213–251.

    Google Scholar 

  26. —, Nijenhuis infinity and contractible differential graded manifolds, Compos. Math. 141 (2005), no. 5, 1238–1254.

    Article  MathSciNet  Google Scholar 

  27. —, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition.

    MATH  Google Scholar 

  28. M. Méndez and J. Yang, Möbius species, Adv. Math. 85 (1991), no. 1, 83–128.

    Article  MathSciNet  MATH  Google Scholar 

  29. —, Shuffle algebras, Annales Instit. Fourier 61 (2011), no. 1, 799–850.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

    Book  MATH  Google Scholar 

  31. Henrik Strohmayer, Operads of compatible structures and weighted partitions, J. Pure Appl. Algebra 212 (2008), no. 11, 2522–2534.

    Article  MathSciNet  MATH  Google Scholar 

  32. —, Operad profiles of Nijenhuis structures, Differential Geom. Appl. 27 (2009), no. 6, 780–792.

    Article  MathSciNet  MATH  Google Scholar 

  33. —, Prop profile of bi-Hamiltonian structures, J. Noncommut. Geom. 4 (2010), no. 2, 189–235.

    Article  MathSciNet  MATH  Google Scholar 

  34. Bruno Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2007), no. 2, 699–725.

    Article  MathSciNet  MATH  Google Scholar 

  35. —, A Koszul duality for props, Trans. of Amer. Math. Soc. 359 (2007), 4865–4993.

    Article  MathSciNet  MATH  Google Scholar 

  36. —, Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math. 620 (2008), 105–164.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loday, JL., Vallette, B. (2012). Methods to Prove Koszulity of an Operad. In: Algebraic Operads. Grundlehren der mathematischen Wissenschaften, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30362-3_8

Download citation

Publish with us

Policies and ethics