Skip to main content

Methods for the Detection of Gasotransmitters

  • Chapter
  • First Online:
Gasotransmitters: Physiology and Pathophysiology

Abstract

The discovery of gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), represents great milestones in biology. Both the discovery and related study of these gasotransmitters have benefited from selective and sensitive detection methods. This chapter has briefly reviewed and compared the methods used for the detection and determination of these three gasotransmitters. For NO, the detection methods include small molecule organic chemoprobes, transition metal-based probes, capillary electrophoresis (CE), NO-selective electrodes, and protein-based probes. For H2S, the detection methods include chromatographic methods such as gas chromatography (GC) and high performance liquid chromatography (HPLC), reaction-based spectrophotometric methods such as fluorescent chemoprobes and electrochemical methods. CO detection in biological systems mainly focuses on measurement of carboxyhemoglobin (COHb) saturation. Methods such as spectrophotometric methods, GC, and electrochemical methods are used in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3MST:

3-mercaptopyruvate sulfurtransferase

BME:

β-mercaptoethanol

BODIPY:

4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

CE:

Capillary electrophoresis

cGMP:

3’,5’-cyclic guanosine monophosphate

CNS:

Central nervous system

COHb:

Carboxyhaemoglobin

CSE:

Cystathionine γ-lyase

Cys:

Cysteine

DAC:

Diaminocyanine

DAF:

4,5-diaminofluorescein

DAMBOs:

Diaminobenzene-BODIPY

DAN:

2,3-diaminonaphthalene

DAQ:

1,2-diaminoanthraquinone

DAR:

Diaminorhodamine

DAT:

2,3-naphthotriazol

DNS:

Dansyl

DPA:

Dipicolylamine

DTCS:

N-(dithiocarboxy)sarcosine

ECFP:

Enhanced cyan fluorescent protein

EDFR:

Endothelium-derived relaxing factor

EPA:

Environmental Protection Agency

EYFP:

Enhanced yellow fluorescent protein

FID:

Flame ionization detector

FPD:

Flame photometric detector

FRET:

Förster resonance energy transfer

GC:

Gas chromatography

GFP:

Green fluorescent protein

GSH:

Glutathione

Hb:

Hemoglobin or haemoglobin

Hcy:

Homocysteine

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HHb:

Reduced haemoglobin

HO:

Heme oxygenase

HPLC:

High performance liquid chromatography

ISE:

Ion selective electrode

LIF:

Laser-induced fluorescence

MetHb:

Methemoglobin

MT:

Metallothionein

NIR:

Near infrared

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

O2Hb:

Oxyhaemoglobin

PBS:

Phosphate buffered saline

PeT:

Photoinduced electron transfer

PFPD:

Pulsed flame photometric detector

PHSS:

Polarographic hydrogen sulfide sensor

PID:

Photoionization detector

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RSS:

Reactive sulfur species

SAOB:

Sulfide antioxidant buffer

SER:

Serine

SulphHb:

Sulphemoglobin

TCD:

Thermo conductivity detector

TEMPO:

2,2,6,6-tetramethylpiperidinoxyl radical

UV:

Ultraviolet

CH4 :

Methane

CO:

Carbon monoxide

CO2 :

Carbon dioxide

CuS:

Copper(II) sulfide

FeCl3 :

Iron(III) chloride

Fe(CN)3 :

ferricyanide

H2 :

Hydrogen

H2O2 :

Hydrogen peroxide

H2S:

Hydrogen sulfide

H2SO4 :

Sulfuric acid

H3PO4 :

Phosphoric acid

HCl:

Hydrochloric acid

HS :

Hydrosulfide anion

I2 :

Iodine

I2O5 :

Iodine pentoxide

K3FeCN6 :

Potassium ferricyanide

Mg2+ :

Magnesium cation

N2O3 :

Dinitrogen trioxide

Na2S2O4 :

Sodium dithionite

Na2SO3 :

Sodium sulfite

NaI:

Sodium iodide

NaOH:

Sodium hydroxide

NO2 :

Nitrite anion

NO3 :

Nitrate anion

NO2 :

Nitrogen dioxide

O2 :

Oxygen

O2 :

Superoxide anion

ONOO :

Peroxynitrite anion

PdCl2 :

Palladium chloride

S2− :

Sulfide anion

ZnCl2 :

Zinc chloride

Zn(OAc)2 :

Zinc acetate

ZnS:

Zinc sulfide

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    PubMed  CAS  Google Scholar 

  • Ahern GP, Hsu S-F, Klyachko VA, Jackson MB (2000) Induction of persistent sodium current by exogenous and endogenous nitric oxide. J Biol Chem 275(37):28810–28815

    PubMed  CAS  Google Scholar 

  • Allen BW, Piantadosi CA, Coury LA Jr (2000) Electrode materials for nitric oxide detection. Nitric Oxide 4(1):75–84

    PubMed  CAS  Google Scholar 

  • Almy LH (1925) A method for the estimation of hydrogen sulfide in proteinaceous food products. J Am Chem Soc 47(5):1381–1390

    CAS  Google Scholar 

  • Anderson BB, Chen G, Gutman DA, Ewing AG (1999) Demonstration of two distributions of vesicle radius in the dopamine neuron of Planorbis corneus from electrochemical data. J Neurosci Meth 88(2):153–161

    CAS  Google Scholar 

  • Ayres SM, Criscitiello A,   SG Jr (1966) Determimmation of blood carbon monoxide comitemmt by gas chromatography. J Appl Physiol 21:1368–1370

    Google Scholar 

  • Barker SLR, Clark HA, Swallen SF, Kopelman R, Tsang AW, Swanson JA (1999a) Ratiometric and fluorescence-lifetime-based biosensors incorporating cytochrome c and the detection of extra- and intracellular macrophage nitric oxide. Anal Chem 71(9):1767–1772

    PubMed  CAS  Google Scholar 

  • Barker SLR, Zhao Y, Marletta MA, Kopelman R (1999b) Cellular applications of a sensitive and selective fiber-optic nitric oxide biosensor based on a dye-labeled heme domain of soluble guanylate cyclase. Anal Chem 71(11):2071–2075

    PubMed  CAS  Google Scholar 

  • Bedioui F, Trevin S, Devynck J (1994) The use of gold electrodes in the electrochemical detection of nitric oxide in aqueous solution. J Electroanal Chem 377(1–2):295–298

    CAS  Google Scholar 

  • Berninger H, Smith R (1959) A modification of the spectrophotometric determination of carbon monoxide in blood enabling direct determination of percent hemoglobin saturation. Clin Chem 5(2):127–134

    PubMed  CAS  Google Scholar 

  • Berube PR, Parkinson PD, Hall ER (1999) Measurement of reduced sulphur compounds contained in aqueous matrices by direct injection into a gas chromatograph with a flame photometric detector. J Chromatogr A 830(2):485–489

    CAS  Google Scholar 

  • Beutler E, West C (1984) Simplified determination of carboxyhemoglobin. Clin Chem 30(6):871–874

    PubMed  CAS  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916

    PubMed  CAS  Google Scholar 

  • Boumba VA, Vougiouklakis T (2005) Evaluation of the methods used for carboxyhemoglobin analysis in postmortem blood. Int J Toxicol 24(4):275–281

    PubMed  CAS  Google Scholar 

  • Brunelle JA, Degtiarov AM, Moran RF, Race LA (1996) Simultaneous measurement of total hemoglobin and its derivatives in blood using CO-oximeters: analytical principles; their application in selecting analytical wavelengths and reference methods; a comparison of the results of the choices made. Scand J Clin Lab Invest 56:47–69

    CAS  Google Scholar 

  • Burgaud JL, Riffaud JP, Del Soldato P (2002) Nitric-oxide releasing molecules: a new class of drugs with several major indications. Curr Pharm Des 8(3):201–213

    PubMed  CAS  Google Scholar 

  • Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122(1):U11–U45

    Google Scholar 

  • Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105(4):365–U105

    PubMed  CAS  Google Scholar 

  • Chang CJ, Lippert AR, New EJ (2011) Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 133(26):10078–10080

    PubMed  Google Scholar 

  • Chang SK, Choi MG, Cha S, Lee H, Jeon HL (2009) Sulfide-selective chemosignaling by a Cu(2+) complex of dipicolylamine appended fluorescein. Chem Comm 47:7390–7392

    PubMed  Google Scholar 

  • Cheer JF, Heien MLAV, Garris PA, Carelli RM, Wightman RM (2005) Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: Implications for intracranial self-stimulation. Proc Natl Acad Sci U S A 102(52):19150–19155

    PubMed  CAS  Google Scholar 

  • Chen X, Sheng C, Zheng X (2001) Direct nitric oxide imaging in cultured hippocampal neurons with diaminoanthraquinone and confocol microscopy. Cell Biol Int 25(7):593–598

    PubMed  CAS  Google Scholar 

  • Chen Y-H, Yao W-Z, Geng B, Ding Y-L, Lu M, Zhao M-W, Tang C-S (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:3205–3211

    PubMed  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454

    CAS  Google Scholar 

  • Cocks TM, Angus JA, Compbell JH, Campbell GR (1985) Release and properties of endotheliurn-derived relaxing factor (EDRF) from endothelial cells in culture. J Cell Physiol 123:310–320

    PubMed  CAS  Google Scholar 

  • Collison HA, Rodkey FL, O’Neal JD (1968) Determination of carbon monoxide in blood by gas chromatography. Clin Chem 14(2):162–171

    CAS  Google Scholar 

  • Commins BT, Lawther PJ (1965) A sensitive method for the determination of carboxyhaemoglobin in a finger prick sample of blood. Brit J Inductr Med 22:139–143

    CAS  Google Scholar 

  • Culotta E, Koshland DE (1992) NO news is good news. Science 258(5090):1862–1865

    PubMed  CAS  Google Scholar 

  • Cutter GA, Oatts TJ (1987) Determination of dissolved sulfide and sedimentary sulfur speciation using gas chromatography-photoionization detection. Anal Chem 59:717–721

    CAS  Google Scholar 

  • Dacres H, Narayanaswamy R (2005) Evaluation of 1,2-diaminoanthraquinone (DAA) as a potential reagent system for detection of NO. Microchim Acta 152(1):35–45

    CAS  Google Scholar 

  • Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539(1):77–91

    PubMed  CAS  Google Scholar 

  • Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341(1):40–51

    PubMed  CAS  Google Scholar 

  • Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao XY, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104(39):15560–15565

    PubMed  CAS  Google Scholar 

  • Forstermann U, Mulsch A, Bohme E, Busse R (1986) Stimulation of soluble guanylate cyclase by an acetylcholine induced endothelium-derived factor from rabbit and canine arteries. Circ Res 58:531–538

    PubMed  CAS  Google Scholar 

  • Franz KJ, Singh N, Lippard SJ (2000) Metal-based NO sensing by selective ligand dissociation. Angew Chem Int Ed 39(12):2120–2122

    CAS  Google Scholar 

  • Frelink T, Visscher W, Veen JARv (1994) The effect of Sn on Pt/C catalysts for the methanol electro-oxidation. Electrochim Acta 39(11):1871–1875

    CAS  Google Scholar 

  • Friedemann MN, Robinson SW, Gerhardt GA (1996) o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68(15):2621–2628

    PubMed  CAS  Google Scholar 

  • Friedrich KA, Geyzers KP, Linke U, Stimming U, Stumper J (1996) CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition: an IR spectroscopic study. J Electroanal Chem 402(1–2):123–128

    Google Scholar 

  • Fukui Y, Matsubara M, Akane A, Hama K, Matsubara K, Takahashi S (1985) Determination of carboxyhemoglobin in heated blood-sources of error and utility of derivative spectrophotometry. J Anal Toxicol 9:81–84

    PubMed  CAS  Google Scholar 

  • Fukui Y, Matsubara M, Takahashi S, Matsubara K (1984) A study of derivative spectrophotometry for the determination of carboxyhemoglobin in blood. J Anal Toxicol 8:277–281

    PubMed  CAS  Google Scholar 

  • Furchgott R, Vanhoutte P (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3(9):2007–2018

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1988) Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed) Mechanisms of Vasodilatation. Raven Press. IV, New York

    Google Scholar 

  • Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol-Reg I 295(5):R1479–R1485

    CAS  Google Scholar 

  • Gabe Y, Ueno T, Urano Y, Kojima H, Nagano T (2006) Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Anal Bioanal Chem 386(3):621–626

    PubMed  CAS  Google Scholar 

  • Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T (2004) Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore rational design of potentially useful bioimaging fluorescence probe. J Am Chem Soc 126(10):3357–3367

    PubMed  CAS  Google Scholar 

  • Galindo F, Kabir N, Gavrilovic J, Russell DA (2008) Spectroscopic studies of 1,2-diaminoanthraquinone (DAQ) as a fluorescent probe for the imaging of nitric oxide in living cells. Photoch Photobio Sci 7(1):126–130

    CAS  Google Scholar 

  • Glaister MG, Moody GJ, Nash T, Thomas JDR (1984) The stability of sulfide anti-oxidant buffer. Anal Chim Acta 165:281–284

    CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima J (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16(1):119–139

    PubMed  CAS  Google Scholar 

  • Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reiffenstein RJ, Dowling G (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13:105–109

    PubMed  CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis. Wiley, New York

    Google Scholar 

  • Griess P (1879) Bemerkungen zu der abhandlung der HH. Weselsky und Benedikt “ueber einige azoverbindungen”. Ber dtsch chem Ges 12(1): 426–428

    Google Scholar 

  • Griffith TM, Edwards DH, Lewis MJ, Newby AC, Henderson AH (1984) The nature of endothelium-derived vascular relaxant factor. Nature 308:645–647

    PubMed  CAS  Google Scholar 

  • Grisham MB, Johnson GG, Lancaster JR Jr (1996) Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol 268:237–246

    PubMed  CAS  Google Scholar 

  • Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endotheium-derived vascular relaxing factor. Nature 320:454–456

    PubMed  CAS  Google Scholar 

  • Guillot JG, Weber JP, Savoie JY (1981) Quantitative determination of carbon monoxide in blood by head-space gas chromatography. J Anal Toxicol 5:264–266

    PubMed  CAS  Google Scholar 

  • Hart CL, Smith GD, Hole DJ, Hawthorne VM (2006) Carboxyhaemoglobin concentration, smoking habit, and mortality in 25 years in the Renfrew/Paisley prospective cohort study. Heart 92(3):321–324

    PubMed  CAS  Google Scholar 

  • Harutyunyan EH, Safonova TN, Kuranova IP, Popov AN, Teplyakov AV, Obmolova GV, Vainshtein BK, Dodson GG, Wilson JC (1996) The binding of carbon monoxide and nitric oxide to leghaemoglobin in comparison with other haemoglobins. J Mol Biol 264(1):152–161

    PubMed  CAS  Google Scholar 

  • Hill PG, Smith RM (2000) Determination of sulphur compounds in beer using headspace solid-phase microextraction and gas chromatographic analysis with pulsed flame photometric detection. J Chromatogr A 872(1–2):203–213

    PubMed  CAS  Google Scholar 

  • Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WRG (2001) Spatiotemporal dynamics of guanosine 3′, 5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci U S A 98(5):2437–2442

    PubMed  CAS  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Comm 237(3):527–531

    PubMed  CAS  Google Scholar 

  • Hseu T-M, Rechnitz GA (1968) Analytical study of a sulfide ion-selective membrane electrode in alkaline solution. Anal Chem 40(7):1054–1060

    CAS  Google Scholar 

  • Hughes MN, Centelles MN, Moore KP (2009) Making and working with hydrogen sulfide the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radical Bio Med 47(10):1346–1353

    CAS  Google Scholar 

  • Hyspler R, Ticha A, Indrova M, Zadak Z, Hysplerova L, Gasparic J, Churacek J (2002) A simple, optimized method for the determination of sulphide in whole blood by GC–MS as a marker of bowel fermentation processes. J Chromatogr B 770:255–259

    CAS  Google Scholar 

  • Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem. J 381:113–123

    PubMed  CAS  Google Scholar 

  • Jiang H, Wu H, Li Z, Geng B, Tang C (2005) Changes of the new gaseous transmitter H2S in patients with coronary heart disease. J First Mil Med Univ 25:951–954

    CAS  Google Scholar 

  • Jimenez D, Martinez-Manez R, Sancenon F, Ros-Lis JV, Benito A, Soto J (2003) A new chromo-chemodosimeter selective for sulfide anion. J Am Chem Soc 125(30):9000–9001

    PubMed  CAS  Google Scholar 

  • Kamoun P, Belardinelli M-C, Chabli A, Lallouchi K, Chadefaux-Vekemans B (2003) Endogenous hydrogen sulfide overproduction in down syndrom. Am J Med Genet 116A(3):310–311

    PubMed  Google Scholar 

  • Kanamaru K, Waga S, Kojima T, Fujimoto K, Niwa S (1957) Endothelium-dependent relaxation of canine basilar arteries. II. Inhibition by hemoglobin and cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage. Stroke 18:938–943

    Google Scholar 

  • Katsuei S (1990) An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 9(1):69–76

    Google Scholar 

  • Kazemi F, Kiasat AR, Sayyahi S (2004) Chemoselective reduction of azides with sodium sulfide hydrate under solvent free conditions. Phosphorus Sulfur 179:1813–1817

    CAS  Google Scholar 

  • Kimura C, Koyama T, Oike M, Ito Y (2000) Hypotonic stress-induced NO production in endothelium depends on endogenous ATP. Biochem Biophys Res Comm 274(3):736–740

    PubMed  CAS  Google Scholar 

  • Kimura C, Oike M, Koyama T, Ito Y (2001) Impairment of endothelial nitric oxide production by acute glucose overload. Am J Physiol-Endoc M 280(1):E171–E178

    CAS  Google Scholar 

  • Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26(1):13–19

    PubMed  CAS  Google Scholar 

  • Kinnicut LP, Sanford GR (1900) The iodometric determination of small quantities of carbon monoxide. J Am Chem Soc 22:14–18

    Google Scholar 

  • Kinnicutt LP, Sanford GR (1899) The iodometric determination of small quantities of carbon monoxide. Public Health Pap Rep 25:600–604

    PubMed  CAS  Google Scholar 

  • Klendshoj NC, Feldstein M, Sprague AL (1950) The spectrophotometric determination of carbon monoxide klendshoj. J Biol Chem 183:297–303

    CAS  Google Scholar 

  • Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Urano Y, Higuchi T, Hirata Y, Nagano T (2001) Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal Chem 73(9):1967–1973

    PubMed  CAS  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998a) Detection and imaging of nitric oxide with novel fluorescent indicators:  diaminofluoresceins. Anal Chem 70(13):2446–2453

    PubMed  CAS  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K, Urano Y, Higuchi T, Tanaka J, Kudo Y, Nagano T (1998b) Direct evidence of NO production in rat hippocampus and cortex using a new fluorescent indicator: DAF-2 DA. NeuroReport 9(15):3345–3348

    PubMed  CAS  Google Scholar 

  • Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998c) Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem Pharm Bull 46:373–375

    PubMed  CAS  Google Scholar 

  • Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T (1999) Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed 38(21):3209–3212

    CAS  Google Scholar 

  • Koshland DE (1992) The molecule of the year. Science 258(5090):1861

    PubMed  Google Scholar 

  • Kozminski KD, Gutman DA, Davila V, Sulzer D, Ewing AG (1998) Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal Chem 70(15):3123–3130

    PubMed  CAS  Google Scholar 

  • Kruger WD, Chen XL, Jhee KH (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279(50):52082–52086

    PubMed  Google Scholar 

  • Lampiao F, Strijdom H, Du Plessis SS (2006) Direct nitric oxide measurement in human spermatozoa: flow cytometric analysis using the fluorescent probe, diaminofluorescein. Int J Andrology 29(5):564–567

    CAS  Google Scholar 

  • Lancaster JR Jr (2000) The physical properties of nitric oxide: determinants of the dynamics of NO in tissue. In: Louis JI (ed) Nitric oxide: biology and pathobiology, pp 209–224. Academic, San Diego

    Google Scholar 

  • Lapainis T, Scanlan C, Rubakhin S, Sweedler J (2007) A multichannel native fluorescence detection system for capillary electrophoretic analysis of neurotransmitters in single neurons. Anal Bioanal Chem 387(1):97–105

    PubMed  CAS  Google Scholar 

  • Lawrence NS, Davis J, Compton RG (2000) Analytical strategies for the detection of sulfide: a review. Talanta 52(5):771–784

    PubMed  CAS  Google Scholar 

  • Lee Y, Kim J (2007) Simultaneous electrochemical detection of nitric oxide and carbon monoxide generated from mouse kidney organ tissues. Anal Chem 79(20):7669–7675

    PubMed  CAS  Google Scholar 

  • Lefer DJ (2007) A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci U S A 104(46):17907–17908

    PubMed  CAS  Google Scholar 

  • Lei W, Dasgupta PK (1989) Determination of sulfide and mercaptans in caustic scrubbing liquor. Anal Chim Acta 226:165–170

    CAS  Google Scholar 

  • Lewis GN, Godschmid O, Magel TT, Bigeleisen J (1943) Dimetric and other forms of methylene blue: absorption and fluorescence of the pure monomer. J Am Chem Soc 65:1150–1154

    CAS  Google Scholar 

  • Lewis RJ, Johnson RD, Canfield DV (2004) An accurate method for the determination of carboxyhemoglobin in postmortem blood using GC-TCD. J Anal Toxicol 28(1):59–62

    PubMed  CAS  Google Scholar 

  • Li L, Bhatia M, Zhu YZ, Ramnath RD, Wang ZJ, Anuar FBM, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19(9):1196–1198

    PubMed  CAS  Google Scholar 

  • Light TS, Swartz JL (1968) Analytical evaluation of the silver sulfide membrane electrode. Anal Lett 1:825–836

    CAS  Google Scholar 

  • Lim MH, Kuang C, Lippard SJ (2006a) Nitric oxide-induced fluorescence enhancement by displacement of dansylated ligands from cobalt. ChemBioChem 7(10):1571–1576

    PubMed  CAS  Google Scholar 

  • Lim MH, Lippard SJ (2005) Copper complexes for fluorescence-based NO detection in aqueous solution. J Am Chem Soc 127(35):12170–12171

    PubMed  CAS  Google Scholar 

  • Lim MH, Lippard SJ (2006a) Fluorescent nitric oxide detection by copper complexes bearing anthracenyl and dansyl fluorophore ligands. Inorg Chem 45(22):8980–8989

    PubMed  CAS  Google Scholar 

  • Lim MH, Lippard SJ (2006b) Metal-based turn-on fluorescent probes for sensing nitric oxide. Acc Chem Res 40(1):41–51

    Google Scholar 

  • Lim MH, Wong BA, Pitcock WH, Mokshagundam D, Baik M-H, Lippard SJ (2006b) Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J Am Chem Soc 128(44):14364–14373

    PubMed  CAS  Google Scholar 

  • Lim MH, Xu D, Lippard SJ (2006c) Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat Chem Biol 2(7):375–380

    PubMed  CAS  Google Scholar 

  • Lin S, Fagan KA, Li K-X, Shaul PW, Cooper DMF, Rodman DM (2000) Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J Biol Chem 275(24):17979–17985

    PubMed  CAS  Google Scholar 

  • Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M (2011) Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew Chem Int Ed 50(44):10327–10329

    CAS  Google Scholar 

  • López-Rivadulla M, Bermejo AM, Fernández P, Cruz A, Concheiro L (1989) Direct carboxyhemoglobin determination by derivative spectroscopy. Forensic Sci Int 40(3):261–266

    PubMed  Google Scholar 

  • Mahoney JJ, Vreman HJ, Stevenson DK, Kessel ALV (1993) Measurement of carboxyhemoglobinand total hemoglobin by five specialized spectrophotometers (CO-oximeters) in comparison with reference methods. Clin Chem 39(8):1693–1700

    PubMed  CAS  Google Scholar 

  • Malte K (1999) Nitric oxide metabolism and breakdown. BBA-Bioenergetics 1411(2–3):273–289

    Google Scholar 

  • Marín MJ, Thomas P, Fabregat V, Luis SV, Russell DA, Galindo F (2011) Fluorescence of 1,2-diaminoanthraquinone and its nitric oxide reaction product within macrophage cells. ChemBioChem 12(16):2471–2477

    PubMed  Google Scholar 

  • Marks GS, Brien JF, Nakatsu K, McLaughlin BE (1991) Does carbon monoxide have a physiological function. Trends Pharmacol Sci 12:185–188

    PubMed  CAS  Google Scholar 

  • Marletta MA (1993) Nitric-oxide synthase structure and mechanism. J Biol Chem 268(17):12231–12234

    PubMed  CAS  Google Scholar 

  • Martelli A, Testai L, Breschi MC, Blandizzi C, Virdis A, Teddei S and Calderone V (2011) Hydrogen sulfide: novel oppotunity for drug discovery. Med Res Rev

    Google Scholar 

  • McQuade LE, Lippard SJ (2010) Fluorescence-based nitric oxide sensing by Cu(II) complexes that can be trapped in living cells. Inorg Chem 49(16):7464–7471

    PubMed  CAS  Google Scholar 

  • Menon SK, Sathyapalan A, Agrawal YK (1997) Ion selective electrodes in pharmaceutical analysis—a review. Rev Anal Chem 16(4):333–353

    CAS  Google Scholar 

  • Miao H, Rubakhin S, Sweedler J (2003) Analysis of serotonin release from single neuron soma using capillary electrophoresis and laser-induced fluorescence with a pulsed deep-UV NeCu laser. Anal Bioanal Chem 377(6):1007–1013

    PubMed  CAS  Google Scholar 

  • Miao H, Rubakhin SS, Sweedler JV (2005) Subcellular analysis of d-aspartate. Anal Chem 77(22):7190–7194

    PubMed  CAS  Google Scholar 

  • Mitchell KM, Michaelis EK (1998) Multimembrane carbon fiber electrodes for physiological measurements of nitric oxide. Electroanalysis 10(2):81–88

    CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1989) Biosynthesis of nitric oxide from l-arginine: a pathway for the regulation of cell function and communication. Biochem Pharmacol 38(11):1709–1715

    PubMed  CAS  Google Scholar 

  • Moncada S, Radomski MW, Palmer RMJ (1988) Endothelium-derived relaxing factor, identified as nitric oxide and role in the control of vascular tone and platelet function. Biomed Pharmacol 37(13):2495–2501

    CAS  Google Scholar 

  • Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24(12):609–611

    PubMed  CAS  Google Scholar 

  • Morita T, Perrella MA, Lee ME, Kourembanas S (1995) Smooth-muscle cell-derived carbon-monoxide is a regulator of vascular CGMP. Proc Natl Acad Sci U S A 92(5):1475–1479

    PubMed  CAS  Google Scholar 

  • Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters earth. Sci Rev 24:1–42

    CAS  Google Scholar 

  • Mylon SE, Benoit G (2001) Subnanomolar detection of acid-labile sulfides by the classical methylene blue method coupled to HPLC. Environ Sci Technol 35:4544–4548

    PubMed  CAS  Google Scholar 

  • Nagano T (1999) Practical methods for detection of nitric oxide. Luminescence 14(6):283–290

    PubMed  CAS  Google Scholar 

  • Nagano T (2009) Bioimaging probes for reactive oxygen species and reactive nitrogen species. J Clin Biochem Nutr 45(2):111–124

    PubMed  CAS  Google Scholar 

  • Nagano T, Yoshimura T (2002) Bioimaging of nitric oxide. Chem Rev 102(4):1235–1270

    PubMed  CAS  Google Scholar 

  • Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427(2):263–266

    PubMed  CAS  Google Scholar 

  • NobelPrize (1998) from http://www.nobelprize.org/nobel_prizes/medicine/laureates/1998/index.html

  • O’Haver TC (1979) Potential clinical applications of derivative and wavelength-modulation spectrometry. Clin Chem 25(9):1548–1553

    PubMed  Google Scholar 

  • Oliver vBuH (2003) Nitric oxide imaging in living neuronal tissues using fluorescent probes. Nitric Oxide 9(4):217–228

    Google Scholar 

  • Olson KN, Hillyer MA, Kloss JS, Geiselhart RJ, Apple FS (2010) Accident or arson: is CO-oximetry reliable for carboxyhemoglobin measurement postmortem? Clin Chem 56(4):515–519

    PubMed  CAS  Google Scholar 

  • Oritani S, Zhu BL, Ishida K, Shimotouge K, Quan L, Fujita MQ, Maeda H (2000) Automated determination of carboxyhemoglobin contents in autopsy materials using head-space gas chromatography/mass spectrometry. Forensic Sci Int 113(1–3):375–379

    PubMed  CAS  Google Scholar 

  • Page JS, Rubakhin SS, Sweedler JV (2002) Single-neuron analysis using CE combined with MALDI MS and radionuclide detection. Anal Chem 74(3):497–503

    PubMed  CAS  Google Scholar 

  • Pannell LK, Thomson BM, Wilkinson LF (1981) Modified method for the analysis of carbon monoxide in postmortem blood. J Anal Toxicol 5:1–5

    PubMed  CAS  Google Scholar 

  • Panzali A, Signorini C, Albertini A (1987) Improvement in lower carboxyhemoglobin range determination by second-derivative spectroscopy. Clin Chem 33:2311–2312

    PubMed  CAS  Google Scholar 

  • Papadopolou S, Hartmann P, Lips KS, Kummer W, Haberberger RV (2004) Nicotinic receptor mediated stimulation of NO-generation in neurons of rat thoracic dorsal root ganglia. Neurosci Lett 361(1–3):32–35

    PubMed  CAS  Google Scholar 

  • Parks J, Worth HGJ (1985) Carboxyhemoglobin determination by second-derivative spectroscopy. Clin Chem 31(2):279–281

    PubMed  CAS  Google Scholar 

  • Pearce LL, Gandley RE, Han W, Wasserloos K, Stitt M, Kanai AJ, McLaughlin MK, Pitt BR, Levitan ES (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci U S A 97(1):477–482

    PubMed  CAS  Google Scholar 

  • Peng H, Cheng Y, Dai C, Wang B (2011) A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew Chem Int Ed 50(41):9672–9675

    CAS  Google Scholar 

  • Peter W (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free Radical Bio Med 43(7):995–1022

    Google Scholar 

  • Pluth MD, Tomat E, Lippard SJ (2011) Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Annu Rev Biochem 80(1):333–355

    PubMed  CAS  Google Scholar 

  • Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328(1):85–92

    PubMed  CAS  Google Scholar 

  • Porter K, Volman DH (1962) Flame ionization detection of carbon monoxide for gas chromatographic analysis. Anal Chem 34:748–750

    CAS  Google Scholar 

  • Prakash R, Srivastava RC, Seth PK (2001) Polycarbazole modified electrode; nitric oxide sensor. Polym Bull 46(6):487–490

    CAS  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1):51–68

    PubMed  CAS  Google Scholar 

  • Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical nitric oxide sensors for physiological measurements. Chem Soc Rev 39(6):1925–1935

    PubMed  CAS  Google Scholar 

  • Püttmann B, Gerlach EM, Krüger M, Blottner D (2005) Neuromuscular contacts induce nitric oxide signals in skeletal myotubes in vitro. Neurosignals 14(3):85–95

    PubMed  Google Scholar 

  • Qian Y, Karpus J, Kabil O, Zhu H-L, Banerjee R, Zhao J, He C (2011) Selective fluorescent probes for live-cell monitoring of sulfide. Nature Comm 2:495

    Google Scholar 

  • Radfordknoery J, Cutter GA (1993) Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal Chem 65(8):976–982

    CAS  Google Scholar 

  • Rodkey FL, Hill TA, Pitts LL, Robertson RF (1979) Spectrophotometric measurement of carboxyhemoglobin and methemoglobin in blood. Clin Chem 25(8):1388–1393

    PubMed  CAS  Google Scholar 

  • Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T (2005) Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J Am Chem Soc 127(11):3684–3685

    PubMed  CAS  Google Scholar 

  • Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T (2011) Development of a highly selective fluorescence probe for hydrogen sulfide. J Am Chem Soc 133(45):18003–18005

    PubMed  CAS  Google Scholar 

  • Sato M, Hida N, Ozawa T, Umezawa Y (2000) Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Iα and green fluorescent proteins. Anal Chem 72(24):5918–5924

    PubMed  CAS  Google Scholar 

  • Sato M, Hida N, Umezawa Y (2005) Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc Natl Acad Sci U S A 102(41):14515–14520

    PubMed  CAS  Google Scholar 

  • Sato M, Nakajima T, Goto M, Umezawa Y (2006) Cell-based indicator to visualize picomolar dynamics of nitric oxide release from living cells. Anal Chem 78(24):8175–8182

    PubMed  CAS  Google Scholar 

  • Savage JC, Gould DH (1990) Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr Biomed 526:540–545

    CAS  Google Scholar 

  • Schiavon G, Zotti G, Toniolo R, Bontempelli G (1995) Electrochemical detection of trace hydrogen-sulfide in gaseous samples by porous silver electrodes supported on ion-exchange membranes (solid polymer electrolytes). Anal Chem 67(2):318–323

    CAS  Google Scholar 

  • Schuchmann S, Albrecht D, Heinemann U, von Bohlen und Halbach O (2002) Nitric oxide modulates low-Mg2+-induced epileptiform activity in rat hippocampal–entorhinal cortex slices. Neurobiol Dis 11(1):96–105

    PubMed  CAS  Google Scholar 

  • Searcy DG, Peterson MA (2004) Hydrogen sulfide consumption measured at low steady state concentrations using a sulfidostat. Anal Biochem 324(2):269–275

    PubMed  CAS  Google Scholar 

  • Sen U, Mishra PK, Tyagi N, Tyagi SC (2010) Homocysteine to hydrogen sulfide or hypertension. Cell Biochem Biophys 57(2–3):49–58

    PubMed  CAS  Google Scholar 

  • Sesti S, Martino G, Mazzulla S, Chimenti R (2005) Effect of bradykinin on nitric oxide production, urea synthesis and viability of rat hepatocyte cultures. BMC Physiol 5(1):2

    PubMed  Google Scholar 

  • Sheeley SA, Miao H, Ewing MA, Rubakhin SS, Sweedler JV (2005) Measuring d-amino acid-containing neuropeptides with capillary electrophoresis. Analyst 130(8):1198–1203

    PubMed  CAS  Google Scholar 

  • Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146(5):623–626

    PubMed  CAS  Google Scholar 

  • Shin JH, Privett BJ, Kita JM, Wightman RM, Schoenfisch MH (2008) Fluorinated xerogel-derived microelectrodes for amperometric nitric oxide sensing. Anal Chem 80(18):6850–6859

    PubMed  CAS  Google Scholar 

  • Sjostrand T (1951) Endogenous formation of carbon monoxide. Acta Physiol Scand 22:137–141

    PubMed  CAS  Google Scholar 

  • Sjostrand T (1952) The formation of carbon monoxide by the decomposition of haemoglobin in vivo. Acta Physiol Scand 26:338

    PubMed  CAS  Google Scholar 

  • Small KA, Radford ER, Frazier JM, Rodkey FL, Collison HA (1971) A rapid method for simultaneous measurement of carboxy- and methemoglobin in blood. J Appl Physiol 31(1):154–160

    PubMed  CAS  Google Scholar 

  • Smith RC, Tennyson AG, Lim MH, Lippard SJ (2005) Conjugated polymer-based fluorescence turn-on sensor for nitric oxide. Org Lett 7(16):3573–3575

    PubMed  CAS  Google Scholar 

  • Soh N, Katayama Y, Maeda M (2001) A fluorescent probe for monitoring nitric oxide production using a novel detection concept. Analyst 126(5):564–566

    PubMed  CAS  Google Scholar 

  • Sowmya S, Swathi Y, Yeo AL, Shoon ML, Moore PK, Bhatia M (2010) Hydrogen sulfide: regulatory role on blood pressure in hyperhomocysteinemia. Vasc Pharmacol 53(3–4):138–143

    CAS  Google Scholar 

  • Spilker B, Randhahn J, Grabow H, Beikirch H, Jeroschewski P (2008) New electrochemical sensor for the detection of hydrogen sulfide and other redox active species. J Electroanal Chem 612(1):121–130

    CAS  Google Scholar 

  • Stewart RD, Stewart RS, Stamm W, Seelen RP (1976) Rapid estimation of carboxyhemoglobin level in fire fighters. JAMA 235(4):390–392

    PubMed  CAS  Google Scholar 

  • Strijdom H, Muller C, Lochner A (2004) Direct intracellular nitric oxide detection in isolated adult cardiomyocytes: flow cytometric analysis using the fluorescent probe, diaminofluorescein. J Mol Cell Cardiol 37(4):897–902

    PubMed  CAS  Google Scholar 

  • Stuart J, Sweedler J (2003) Single-cell analysis by capillary electrophoresis. Anal Bioanal Chem 375(1):28–29

    PubMed  CAS  Google Scholar 

  • Swindle EJ, Metcalfe DD, Coleman JW (2004) Rodent and human mast cells produce functionally significant intracellular reactive oxygen species but not nitric oxide. J Biol Chem 279(47):48751–48759

    PubMed  CAS  Google Scholar 

  • Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6(11):917–935

    PubMed  CAS  Google Scholar 

  • Tanizawa K (2011) Production of H2S by 3-mercaptopyruvate sulphurtransferase. J Biochem 149(4):357–359

    PubMed  CAS  Google Scholar 

  • Tervaert DGC (1925) Determination of carbon monoxide in blood. Biochem. J 19(2):300–303

    PubMed  CAS  Google Scholar 

  • Tristani-Firouzi M, Demaster EG, Quast BJ, Nelson DP, Archer SL (1998) Utility of a nitric oxide electrode for monitoring the administration of nitric oxide in biologic systems. J Lab Clin Med 131(3):281–285

    PubMed  CAS  Google Scholar 

  • Tung J-Y, Chen J-H, Liao F-L, Wang S-L, Hwang L-P (2000) Crystal and molecular structure of an eight-coodinate N-methyltetraphenylporphyrin complex:  diacetato(N-methyl-meso-tetraphenylporphyrinato)thallium(III). Inorg Chem 39(10):2120–2124

    PubMed  CAS  Google Scholar 

  • Ubuka T, Abe T, Kajikawa R, Morino K (2001) Determination of hydrogen sulfide and acid-labile sulfur in animal tissues by gas chromatography and ion chromatography. J Chromatogr B 757(1):31–37

    CAS  Google Scholar 

  • Van Dam J, Daenens P (1994) Microanalysis of carbon monoxide in blood by head-space capillary gas chromatography. J Forensic Sci 39(2):473–478

    PubMed  CAS  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon-monoxide—a putative neural messenger. Science 259(5093):381–384

    PubMed  CAS  Google Scholar 

  • Villeneuve N, Bedioui F, Voituriez K, Avaro S, Vilaine JP (1998) Electrochemical detection of nitric oxide production in perfused pig coronary artery: comparison of the performances of two electrochemical sensors. J Pharmacol Toxicol 40(2):95–100

    CAS  Google Scholar 

  • von Bohlen und Halbach O, Albrecht D, Heinemann U, Schuchmann S (2002) Spatial nitric oxide imaging using 1,2-diaminoanthraquinone to investigate the involvement of nitric oxide in long-term potentiation in rat brain slices. NeuroImage 15(3):633–639

    Google Scholar 

  • Vreman HJ, Kwong LK, Stevenson DK (1984) Carbon monoxide: an improved microliter blood sample collection system with rapid analysis by gas chromatography. Clin Chem 30(8):1382–1386

    PubMed  CAS  Google Scholar 

  • Vreman HJ, Stevenson DK (1994) Carboxyhemoglobin determined in neonatal blood with a CO-oximeter unaffected by fetal oxyhemoglobin. Clin Chem 40(8):1522–1527

    PubMed  CAS  Google Scholar 

  • Vreman HJ, Stevenson DK, Zwart A (1987) Analysis for carboxyhemoglobin by gas chromatography and multicomponent spectrophotometry. Clin Chem 33(5):694–697

    PubMed  CAS  Google Scholar 

  • Walch SG, Lachenmeier DW, Sohnius E-M, Madea B, Musshoff F (2010) Rapid determination of carboxyhemoglobin in postmortem blood using fully-automated headspace gas chromatography with methaniser and FID. Open Toxicol J 4:21–25

    CAS  Google Scholar 

  • Walters CL (1982) Determination of carbon monoxide with palladium chloride. Microchemical J 27:116–123

    CAS  Google Scholar 

  • Wang B, Anslyn EV (2011) Chemosensors: principles, strategies, and applications. Wiley, New Jersey

    Google Scholar 

  • Wang K, Gasteiger HA, Markovic NM, Ross J PN (1996) On the reaction pathway for methanol and carbon monoxide electooxidation on alloy versus Pt-Ru alloy surfaces. Electrochim Acta 41(16):2587–2593

    CAS  Google Scholar 

  • Wang S, Paton JFR, Kasparov S (2006) The challenge of real-time measurements of nitric oxide release in the brain. Auton Neurosci 126–127:59–67

    PubMed  Google Scholar 

  • Wei TT, Chen C, Hou JW, Xin WJ, Mori A (2000) Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochimica Et Biophysica Acta-Mol Cell Res 1498(1):72–79

    CAS  Google Scholar 

  • Wennesland R (1940) A new method for the determination of carbon monoxide in blood. Acta Physiol Scand 1: 49–70

    Google Scholar 

  • Whitehead TP, Worthington S (1961) The determination of carboxyhaemoglobin. Clin Chim Acta 6(3):356–359

    PubMed  CAS  Google Scholar 

  • Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90(3):765–768

    PubMed  CAS  Google Scholar 

  • Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Comm 326(4):794–798

    PubMed  CAS  Google Scholar 

  • Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008) Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol-Reg I 294(6):R1930–R1937

    CAS  Google Scholar 

  • Widdop B (2002) Analysis of carbon monoxide. Ann Clin Biochem 39:378–391

    PubMed  CAS  Google Scholar 

  • Wiersma JH (1970) 2,3-Diaminonaphthalene as a Spectrophotometric and Fluorometric Reagent for the Determination of Nitrite Ion. Anal Lett 3(3):123–132

    CAS  Google Scholar 

  • Wightman RM, Troyer KP, Mundorf ML, Catahan R (2002) The association of vesicular contents and its effects on release. Ann NY Acad Sci 971(1):620–626

    PubMed  CAS  Google Scholar 

  • Wolff E (1947) A very simple method for the determination of small quantities of carbon monoxide in blood [in French]. Ann Med Leg Criminol Police Sci Toxicol 27:221–222

    CAS  Google Scholar 

  • Wood MW, Hastings RC, Sygowski LA (2005) A homogeneous fluorescent cell-based assay for detection of heterologously expressed nitric oxide synthase activity. J Biomol Screen 10(8):849–855

    PubMed  CAS  Google Scholar 

  • Wright RO, Lewander WJ, Woolf AD (1999) Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med 34(5):646–656

    PubMed  CAS  Google Scholar 

  • Wu F-H, Zhao G-C, Wei X-W (2002) Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem Comm 4(9):690–694

    CAS  Google Scholar 

  • Wu LY, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57(4):585–630

    PubMed  CAS  Google Scholar 

  • Xu W, Yao SJ, Wolfson SKJ (1995) A nitric oxide sensor using reduction current. ASAIO J 41(3):M413–M418

    PubMed  CAS  Google Scholar 

  • Xuan W, Sheng C, Cao Y, He W, Wang W (2012) Fluorescent probes for the detection of hydrogen sulfide in biological systems. Angew Chem Int Ed 51(10):2282–2284

    CAS  Google Scholar 

  • Yang Q, Zhang X, Bao X, Lu H, Zhang W, Wu W, Miao H, Jiao B (2008) Single cell determination of nitric oxide release using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 1201(1):120–127

    PubMed  CAS  Google Scholar 

  • Yao SJ, Xu W, Wolfson SKJ (1995) A micro carbon electrode for nitric oxide monitoring. ASAIO J 41(3):M404–M409

    PubMed  CAS  Google Scholar 

  • Ye S, Zhou W, Abe M, Nishida T, Cui L, Uosaki K, Osawa M, Sasaki Y (2004) Electrochemical control of CO/NO ligand exchange in a triruthenium cluster monolayer assembled on a gold electrode surface. J Am Chem Soc 126(24):7434–7435

    PubMed  CAS  Google Scholar 

  • Ye X, Rubakhin SS, Sweedler JV (2008) Detection of nitric oxide in single cells. Analyst 133(4):423–433

    PubMed  CAS  Google Scholar 

  • Yu F, Li P, Song P, Wang B, Zhaoa J, Han K (2012) An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem Comm asap. doi:10.1039/C1032CC17658K

    Google Scholar 

  • Yukawa N, Suzuoka T, Saito T, Forrest ARW, Osawa M, Takeichi S (1997) Data Processing in CO-Oximeters That Use Overdetermined Systems. Clin Chem 43(189–190):189

    PubMed  CAS  Google Scholar 

  • Zacharia I, Deen W (2005) Diffusivity and solubility of nitric oxide in water and saline. Ann Biomed Eng 33(2):214–222

    PubMed  Google Scholar 

  • Zhang X, Sweedler JV (2001) Ultraviolet native fluorescence fetection in capillary electrophoresis using a metal vapor NeCu Laser. Anal Chem 73(22):5620–5624

    PubMed  CAS  Google Scholar 

  • Zhao WM, Zhang J, Lu YJ, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous K-ATP channel opener. EMBO J 20(21):6008–6016

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for work conducted in the authors’ lab has been provided by the National Institutes of Health (GM084933), the Georgia Research Alliance, Georgia State University Molecular Basis of Disease (MBD) program, Center for Diagnostics and Therapeutics (CDT) program, and Georgia State University Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghe Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peng, H., Chen, W., Wang, B. (2012). Methods for the Detection of Gasotransmitters. In: Hermann, A., Sitdikova, G., Weiger, T. (eds) Gasotransmitters: Physiology and Pathophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30338-8_4

Download citation

Publish with us

Policies and ethics