Skip to main content

Towards the Direct and Inverse Adaptive Mixed Finite Element Formulations for Nearly Incompressible Elasticity at Large Strains

  • Chapter
Advanced Finite Element Methods and Applications

Abstract

This contribution presents advanced numerical models for the solution of the direct and inverse problems of nearly incompressible hyperelastic processes at large strains. The discussed mixed finite element approach contributes to the numerical simulation of coupled multiphysics problems, including the calibration of appropriate material models (parameter identification). The presented constitutive approach is based on the multiplicative decomposition of the deformation gradient resulting in a two-field formulation with displacement components and hydrostatic pressure as primary variables. The ill-posed inverse problem of parameter identification analyzing inhomogeneous displacement fields is solved using deterministic trust-region optimization techniques.Within this context, a semi-analytical approach for sensitivity analysis represents an efficient and accurate method to determine the gradient of the objective function. Themixed boundary value problem is based on the spatial discretization of the weak formulations of the linear momentum balance and the incompressibility condition. Its linearization serves as basis for the solution of the direct problem, while the implicit differentiation of the weak formulations with respect to material parameters provides the necessary relations for the semi-analytical sensitivity analysis. Adaptive mesh refinement and mesh coarsening are realized controlled by a residual a posteriori error estimator. Efficiency and accuracy of the presented direct and inverse numerical techniques are demonstrated on a typical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimators for the Stokes and Oseen equations. SIAM J. Numer. Anal. 34, 228–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armero, F.: On the locking and stability of finite elements in finite deformation plane strain problems. Comput. Struct. 75, 261–290 (2000)

    Article  Google Scholar 

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 3, 337–407 (1977)

    Google Scholar 

  4. Bank, R.E., Welfert, B.D.: A posteriori error estimates for the Stokes equations: a comparison. Comput. Meth. Appl. Mech. Engrg. 82, 323–340 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bathe, K.-J.: Finite-Elemente-Methoden. Springer, Berlin (2002)

    Book  Google Scholar 

  6. Benedix, U.: Parameterschätzung für elastisch-plastische Deformationsgesetze bei Berücksichtigung lokaler und globaler Vergleichsgrößen (Parameter estimation for elasto-plastic material models considering local and global comparative quantities; in German). Dissertation, Report 4/2000, Institut für Mechanik der TU Chemnitz (2000)

    Google Scholar 

  7. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp. 50(181), 1–17 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Brink, U., Stein, E.: On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comp. Mech. 19, 105–119 (1996)

    Article  MATH  Google Scholar 

  10. Bucher, A., Görke, U.-J., Kreißig, R.: A material model for finite elasto-plastic deformations considering a substructure. Int. J. Plast. 20, 619–642 (2004)

    Article  MATH  Google Scholar 

  11. Bucher, A., Görke, U.-J., Steinhorst, P., Kreißig, R., Meyer, A.: Ein Beitrag zur adaptiven gemischten Finite-Elemente-Formulierung der nahezu inkompressiblen Elastizität bei großen Verzerrungen (A contribution to the adaptive mixed finite element formulations for nearly incompressible elasticity at large strains; in German). Preprint CSC/07-06, TU Chemnitz (2007)

    Google Scholar 

  12. Bucher, A., Meyer, A., Görke, U.-J., Kreißig, R.: A contribution to error estimation and mapping algorithms for a hierarchical adaptive FE-strategy in finite elastoplasticity. Comp. Mech. 36(3), 182–195 (2005)

    Article  MATH  Google Scholar 

  13. Bucher, A., Meyer, A., Görke, U.-J., Kreißig, R.: A comparison of mapping algorithms for hierarchical adaptive FEM in finite elasto-plasticity. Comp. Mech. 39(4), 521–536 (2007)

    Article  MATH  Google Scholar 

  14. Chen, J.S., Han, W., Wu, C.T., Duan, W.: On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity. Comput. Meth. Appl. Mech. Engrg. 142, 335–351 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cook, R.D.: Improved two-dimensional finite element. J. Struct. Div. ASCE 100, 1851–1863 (1974)

    Google Scholar 

  16. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall Inc., Englewood Cliffs (1983)

    MATH  Google Scholar 

  17. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  18. Gelin, J.-C., Ghouati, O.: An inverse method for material parameter estimation in the inelastic range. Comp. Mech. 16, 143–150 (1995)

    Article  MATH  Google Scholar 

  19. Görke, U.-J., Bucher, A., Kreißig, R.: Ein Beitrag zur Materialparameteridentifikation bei finiten elastisch-plastischen Verzerrungen durch Analyse inhomogener Verschiebungsfelder mit Hilfe der FEM (A contribution to the identification of material parameters at large elasto-plastic strains analyzing inhomogeneous displacement fields using the finite element method; in German). Preprint SFB393/01-03, TU Chemnitz (2001)

    Google Scholar 

  20. Görke, U.-J., Bucher, A., Kreißig, R.: Zur Numerik der inversen Aufgabe für gemischte (u/p) Formulierungen am Beispiel der nahezu inkompressiblen Elastizität bei großen Verzerrungen (Towards the numerics of the inverse problem for mixed (u/p) formulations on the example of nearly incompressible elasticity at large strains; in German). Preprint CSC/07-07, TU Chemnitz (2007)

    Google Scholar 

  21. Herrmann, L.R.: Elasticity equations for nearly incompressible materials by a variational theorem. AIAA J. 3, 1896–1900 (1965)

    Article  MathSciNet  Google Scholar 

  22. Hood, P., Taylor, C.: Navier-Stokes equations using mixed interpolation. In: Oden, J.T., Gallagher, R.H., Zienkiewicz, O.C., Taylor, C. (eds.) Finite Element Methods in Flow Problems, pp. 121–132. University of Alabama in Huntsville Press (1974)

    Google Scholar 

  23. Hughes, T.J.R.: The finite element method. Dover Publications, New York (2000)

    MATH  Google Scholar 

  24. Ibrahimbegovic, A., Taylor, R.L., Wilson, E.L.: A robust quadrilateral membrane finite element with drilling degrees of freedom. Int. J. Num. Meth. Engng. 30, 445–457 (1990)

    Article  MATH  Google Scholar 

  25. Johansson, H., Runesson, K.: Parameter identification in constitutive models via optimization with a posteriori error control. Int. J. Numer. Meth. Engng. 62, 1315–1340 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kay, D., Silvester, D.: A-posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comp. 21, 1321–1336 (1999)

    Article  MathSciNet  Google Scholar 

  27. Kreißig, R., Benedix, U., Görke, U.-J.: Statistical aspects of the identification of material parameters for elasto-plastic models. Arch. Appl. Mech. 71, 123–134 (2001)

    Article  MATH  Google Scholar 

  28. Kreißig, R., Benedix, U., Görke, U.-J., Lindner, M.: Identification and estimation of constitutive parameters for material laws in elastoplasticity. GAMM-Mitteilungen 30(2), 458–470 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lecampion, B., Constantinescu, A.: Sensitivity analysis for parameter identification in quasi-static poroelasticity. Int. J. Num. Anal. Meth. Geomech. 29(2), 163–185 (2005)

    Article  MATH  Google Scholar 

  30. Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. III, pp. 465–622. Elsevier, Amsterdam (1994)

    Google Scholar 

  31. Mahnken, R., Kuhl, E.: Parameter identification of gradient enhanced damage models with the finite element method. Eur. J. Mech. A/Solids 18, 819–835 (1999)

    Article  MATH  Google Scholar 

  32. Mahnken, R., Stein, E.: The parameter-identification for visco-plastic models via Finite-Element-Methods and gradient methods. Modelling Simul. Mater. Sci. Eng. 2, 597–616 (1994)

    Article  Google Scholar 

  33. Mahnken, R., Stein, E.: Parameter identification for finite deformation elasto-plasticity in principal directions. Comput. Meth. Appl. Mech. Engrg. 147, 17–39 (1997)

    Article  MATH  Google Scholar 

  34. Mahnken, R., Steinmann, P.: Finite element algorithm for parameter identification of material models for fluid saturated porous media. Int. J. Num. Anal. Meth. Geomech. 25(5), 415–434 (2001)

    Article  MATH  Google Scholar 

  35. Masud, A., Xia, K.: A stabilized mixed finite element method for nearly incompressible elasticity. J. Appl. Mech. 72, 711–720 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meyer, A.: Grundgleichungen und adaptive Finite-Elemente-Simulation bei ”Großen Deformationen” (Basic equations and adaptive finite element simulation at large strains; in German). Preprint CSC/07-02, TU Chemnitz (2007)

    Google Scholar 

  37. Meyer, A., Steidten, T.: Improvements and experiments on the Bramble-Pasciak type CG for mixed problems in elasticity. Preprint SFB393/01-12, TU Chemnitz (2001)

    Google Scholar 

  38. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (1999)

    Google Scholar 

  39. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comp. Mech. 34, 484–502 (2004)

    Article  MATH  Google Scholar 

  40. Rüter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Meth. Appl. Mech. Engrg. 190, 519–541 (2000)

    Article  MATH  Google Scholar 

  41. Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches, continuum basis and numerical algorithms. Comput. Meth. Appl. Mech. Engrg. 85, 273–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Taylor, C., Hood, P.: A numerical solution of the Navier Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. Taylor, R.L., Pister, K.S., Herrmann, L.R.: On a variational theorem for incompressible and nearly-incompressible orthotropic elasticity. Int. J. Sol. Struct. 4, 875–883 (1968)

    Article  MATH  Google Scholar 

  44. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner, Chichester and Stuttgart (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Bucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bucher, A., Görke, U., Kreißig, R. (2013). Towards the Direct and Inverse Adaptive Mixed Finite Element Formulations for Nearly Incompressible Elasticity at Large Strains. In: Apel, T., Steinbach, O. (eds) Advanced Finite Element Methods and Applications. Lecture Notes in Applied and Computational Mechanics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30316-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30316-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30315-9

  • Online ISBN: 978-3-642-30316-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics