Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 169))

  • 2926 Accesses

Abstract

This Chapter is on the basics of microwave radiometry used for registration of weak thermal signals. Additionally to the principles of radiometry, some original results are considered. Among them is the application of the methods of stochastic dynamics to the analysis of radiation and a technique developed to separate the parasitic deterministic and human-body thermal signals. A millimeter wave imager of a novel design is described allowing working in the radiometric, in scattering, and in holographic regimes. References -74. Figures -18. Pages -39.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave Remote Sensing. Active and Passive, pp. 1–3. Addison-Wesley Publishing Comp., Reading (1981)

    Google Scholar 

  2. Sharkov, E.A.: Passive Microwave Remote Sensing of the Earth. Physical Foundations. Physical Foundations. Springer, Berlin (2003)

    Google Scholar 

  3. Armand, N.A., Polyakov, V.M.: Radiowave Propagation and Remote Sensing of the Environment. CRC, Boca Raton (2004)

    Book  Google Scholar 

  4. Skou, N., Le Vine, D.: Microwave Radiometer Systems: Design and Analysis. Artech House, Norwood (2006)

    Google Scholar 

  5. Godik, E.E., Gulyaev, Y.V.: Functional imaging of the human body. IEEE Eng. Medicine and Biology 10(4), 21–29 (1991)

    Article  Google Scholar 

  6. Foster, K.R., Cheever, E.A.: Microwave radiometry in biomedicine. A reappraisal. Bioelectromagnetics 13(6), 567–579 (1992)

    Article  Google Scholar 

  7. Klementsen, Ø., Birkelund, Y., Jacobsen, S.K., et al.: Design of medical radiometer front-end for improved performance. Progress in Electromagnetics Research B 27, 289–306 (2011)

    Google Scholar 

  8. Heinz, E., May, T., Zieger, G., et al.: Passive submillimeter-wave stand-off video camera for security applications. J. Infrared Milli. Teraherz Waves 31, 1355–1369 (2010)

    Article  Google Scholar 

  9. Fedoseev, L.I., Bystrov, R.P., Krasnaynsky, A.F., et al.: Experimental study of radiothermal selectivity in millimeter-waves. Zhurnal Radioelektroniki (J. Radio Electronics) (12), 1–17 (2010) (in Russian)

    Google Scholar 

  10. Chen, K., Zhu, Y., Guo, X., et al.: Design of 8-mm-band aperture synthetic radiometer and imaging experiment. J. Infrared Milli. Terahertz Waves 31, 724–734

    Google Scholar 

  11. Peichl, M., Dill, S., Jirousek, M., Süß, H.: Microwave radiometry – imaging technologies and applications. In: Proc. WFMN 2007, pp. 75–83 (2007)

    Google Scholar 

  12. Gvozdev, V.I., Kouzaev, G.A., Krivoruchko, V.I., Turygin, S.Y.: Multifunctional radio vision system (Imager). Russian Federation Patent, No. 2139522 dated, July 30 (1998)

    Google Scholar 

  13. Gvozdev, V.I., Krivoruchko, V.I., Kouzaev, G.A., Turygin, S.Y.: A microwave imager. Measurement Techniques 43, 270–275 (2000)

    Article  Google Scholar 

  14. Kouzaev, G.A., Turygin, S.Y., Tchernyi, V.V., et al.: Millimeter-wave high-sensitive radiovision system for study of the human-body radiation. In: Proc. Int. SPIE Conf. EBIOS 2000, Amsterdam, Netherlands, Paper No 4158-50 (July 2000)

    Google Scholar 

  15. Kouzaev, G.A., Kulevatov, M.A., Turygin, S.Y., et al.: A millimeter-wave high-sensitivity radio-vision system and a study of bio-objects’ electromagnetic fields. Medical Physics (5), 70–71, in Russian (1998)

    Google Scholar 

  16. Stephan, K.D.: Radiometry before World War II: Measuring infrared and millimeter-wave radiation 1800-1925. IEEE Antennas and Propag. 47(6), 28–37 (2005)

    Article  Google Scholar 

  17. Chen, Y.-F., Hover, D., Sendelbach, S., et al.: Microwave photon counter based on Josephson junction. Phys. Rev. Lett. 107(21), 217401 (2011)

    Article  Google Scholar 

  18. Dicke, R.H.: The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instr. 3, 268–279 (1946)

    Article  Google Scholar 

  19. Jie, L., Zhesi, W., Yunnei, C., et al.: Research on the microwave radiometer signal waveform simulation. In: Proc. of 2011 4th Int. Conf. Intelligent Comput. Techn. Automation, pp. 679–682 (2011)

    Google Scholar 

  20. Randa, J., Lahtinen, J., Camps, A., et al.: Recommended terminology for microwave radiometry. NIST Technical Note 1551 (2008)

    Google Scholar 

  21. Hand, J.W., Van Leewen, G.M.J., Mizushina, S., et al.: Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling. Phys. Med. Biol. 46, 1885–1903 (2001)

    Article  Google Scholar 

  22. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9(1-2), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kouzaev, G.A.: The use of a data reconstruction algorithm to electromagnetic bio-signals. In: Proc. Int. SPIE Conf. EBIOS 2000, pp. 4158–4149, Paper No 4158-49 (July 2000)

    Google Scholar 

  24. Kouzaev, G.A., Bedenko, E.A.: Study of radiometric signals with chaotic dynamics methods. Medical Physics (5), 72–75 (1998) (in Russian)

    Google Scholar 

  25. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Prentice-Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  26. Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990)

    Article  MathSciNet  Google Scholar 

  27. Potapov, A.: Fractals, scaling and fractional operators in radio techniques and electronics: contemporary state and developments. J. Radio Electronics (1), 1–99 (2010) (in Russian)

    Google Scholar 

  28. Maasch, K.A.: Calculating climate attractor dimension from δ 18O records by the Grassberger-Procaccia algorithm. Climate Dynamics 4(1), 45–55 (1989)

    Article  Google Scholar 

  29. Fraedrich, K.: Estimating the dimensions of weather and climate attractors. J. Atmospher. Sci. 43(5), 419–432 (1986)

    Article  MathSciNet  Google Scholar 

  30. Leok, M.,, B.T.: Estimating the attractor dimension of the equatorial weather system. Acta Phys. Polonica A 85(suppl. S-27) (1994)

    Google Scholar 

  31. Tsonis, A., Elsner, J.B., Georgakakos, K.P.: Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation. J. Atmospher. Sci. 50(15), 2549–2555 (1993)

    Article  Google Scholar 

  32. Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20(3), 167–192 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malraison, B., Atten, P., Berge, P., Dubois, M.: Dimension of strange attractors: an experimental determination for the chaotic regime of two convective systems. J. Physique – Lett. 44(22), L-897–L-902 (1983)

    Article  Google Scholar 

  34. Torkamani, M.A., Asgari, J., Lucas, C.: Estimating strange attractor’s dimension in very noisy data. In: 2nd Int. Conf. Information and Communication Technologies, ICTTA 2006, Damascus, Syria, pp. 1944–1947 (2006)

    Google Scholar 

  35. Weber, R.O., Talkner, P., Stefanicki, G., Arvisais, L.: Search for finite dimensional attractors in atmospheric turbulence. Boundary-Layer Meteorology 73(1-2), 1–14 (1995)

    Article  Google Scholar 

  36. Lehnertz, K., Elger, C.: Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett. 80(22), 5019–5022 (1998)

    Article  Google Scholar 

  37. Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Prog. Biomed. 80(3), 187–194 (2005)

    Article  Google Scholar 

  38. Franca, L.F.P., Savi, M.A.: Estimating attractor dimension on the nonlinear pendulum time series. J. Braz. Soc. Mech. Sci. 23(4), 427–439 (2001)

    Article  Google Scholar 

  39. Baker, G.L., Gollub, J.P.: Chaotic Dynamics: an Introduction. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  40. Mudelsee, M., Stattegger, K.: Plio-/Pleistocene climate modeling based on oxygen isotope time series from deep-sea sediment cores: The Grassberger-Procaccia algorithm and chaotic climate systems. Math. Geol. 26(7), 799–815 (1994)

    Article  Google Scholar 

  41. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, B.S. (eds.). Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  42. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. McGuinness, M.J.: A computation of the limit capacity of the Lorenz attractor. Physica D 16(2), 265–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Smith, L.A.: Intrinsic limits on dimension calculations. Phys. Lett. A 133(6), 283–288 (1988)

    Article  Google Scholar 

  45. Havstad, J.W., Ehlers, C.L.: Attractor dimension of nonstationary dynamical systems from small data sets. Phys. Rev. A 39(2), 845–853 (1989)

    Article  MathSciNet  Google Scholar 

  46. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmospher. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  47. http://www.mathworks.com/support/tech-notes/1500/1510_files/ODE_non_adaptive/ode4.m

  48. Glazier, J.A., Libchaber, A.: Quasi-periodicity and dynamical systems: An experimentalist’s view. IEEE Trans. Circuits Syst. 35(7), 790–809 (1988)

    Article  MathSciNet  Google Scholar 

  49. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., et al.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33(2), 1141–1151 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Richter, H.: On a family of maps with multiple chaotic attractors. Chaos, Solitons Fractals 36(3), 559–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jensen, M.H., Kadanoff, L.P., Libchaber, A., et al.: Global universality at the onset of chaos: Results of a forced Rayleigh-Bénard experiment. Phys. Rev. Lett. 55(25), 2798–2801 (1985)

    Article  Google Scholar 

  52. Consolini, G., Marcucci, M.F., Candidi, M.: Multifractal structure of auroral electrojet index data. Phys. Rev. Lett. 76(21), 4082–4085 (1996)

    Article  Google Scholar 

  53. Luo, X., Small, M., Danca, M.-F., Chen, G.: On a dynamical system with multiple chaotic attractors. Int. J. Bifurcation Chaos 17(9), 3235–3251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Dong, L., Zhi-Gang, Z.: Multiple attractors and generalized synchronization in delayed Mackey-Glass systems. Chinese Phys. B 17(11), 4009–4013 (2008)

    Article  Google Scholar 

  55. Thode, H.C.: Testing for Normality. Marcel Dekker, New York (2002)

    Book  MATH  Google Scholar 

  56. Royston, J.P.: Approximating the Shapiro-Wilk W-test for non-normality. Statist. Comput. 2(3), 117–119 (1992)

    Article  Google Scholar 

  57. Royston, J.P.: Remark AS R94: A remark on algorithm AS 181: The W-test for normality. J. Royal Statist. Soc. C 44(4), 547–551 (1995)

    Google Scholar 

  58. D’Agostino, R.B., Belanger, A., D’Agostino, R.B.: A suggestion for using powerful and informative tests of normality. Amer. Statist. 44(4), 316–320 (1990)

    Google Scholar 

  59. http://www.mathworks.com/matlabcentral/fileexchange/13964

  60. http://www.mathworks.com/matlabcentral/fileexchange/3954

  61. Kapranov, S.V., Kouzaev, G.A.: Characterization of microwave radiometers and study of human body radiation by the means of the state space reconstruction algorithms. (Unfinished paper, 2012)

    Google Scholar 

  62. Kouzaev, G.A.: A projective approach to the problems of processing of complex signals. Radioelektronika (Radioelectroniks). Izvestia Vysshikh Uchebnykh Zavedenyi (1), 53–57 (2004)

    Google Scholar 

  63. Peichl, M., Dill, S., Jirouseck, M., et al.: Microwave radiometry - imaging technologies and applications. In: Proc. of WFMN 2007, Chemnitz, Germany, pp. 75–83 (2007)

    Google Scholar 

  64. Watabe, K., Shimizu, K., Yoneyama, M., et al.: Millimeter-wave active imaging using neural networks for signal processing. IEEE Trans., Microw. Theory Techn. 51, 1512–1516 (2003)

    Article  Google Scholar 

  65. Nanzer, J.A., Rogers, R.L.: Analysis of the signal response of a scanning-beam millimeter-wave correlation radiometer. IEEE Trans., Microw. Theory Techn. 59, 2357–2368 (2011)

    Article  Google Scholar 

  66. Weinreb, S.: Monolithic integrated circuit imaging radiometers. In: 1991 IEEE MTT-S Dig., vol. L-8, pp. 405–408 (1991)

    Google Scholar 

  67. Corbella, I., Tores, F., Camps, A., et al.: L-band aperture synthesis radiometry: hardware requirements and system performance. In: Proc. IGARSS 2000 Symp., vol. 7, pp. 2975–2977 (2000)

    Google Scholar 

  68. Kim, W.-G., Moon, N.-W., Chang, Y.-S., et al.: System design of focal plane array based millimeter-wave imaging radiometer for concealed weapon detection. In: Proc. IGARSS 2011 Symp., pp. 2258–2261 (2011)

    Google Scholar 

  69. Liao, S., Gopalsami, N., Elmer, T.W., et al.: Passive millimeter-wave dual-polarization imagers. IEEE Trans., Instr. Measur., 1–9 (2012)

    Google Scholar 

  70. Lutchi, T., Matzler, C.: Stereoscopic passive millimeter-wave imaging and ranging. IEEE Trans., Microw. Theory Techn. 53, 2594–2599 (2005)

    Article  Google Scholar 

  71. Moon, N.-W., Singh, M.K., Kim, Y.-H.: Passive range measurement and discrepancy effects of distance for stereo scanning W-band radiometer. In: Proc. 11th Specialist Meeting Microwave Radiometry and Remote Sensing of the Environment, MicroRad 2010, pp. 217–220 (2010)

    Google Scholar 

  72. Wang, B., Li, X., Qian, S.: Near range MNV synthetic aperture radiometer 3D passive imaging. In: Proc. 8th Int. Symp. Antennas, Propagation and EM Theory, pp. 233–236 (2008)

    Google Scholar 

  73. Arakelyan, A., Grigorian, M., Hambaryan, A., et al.: Combined active and passive measurements of snow, bare and vegetated soils microwave reflective and emissive characteristics by Ka-band, combined scatterometer-radiometer system. In: Proc. IEEE Int. Symp. IGARSS 2010, pp. 4462–4465 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guennadi A. Kouzaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Kouzaev, G.A. (2013). EM Radiometry and Imaging. In: Applications of Advanced Electromagnetics. Lecture Notes in Electrical Engineering, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30310-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30310-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30309-8

  • Online ISBN: 978-3-642-30310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics