Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 169))

Abstract

This Chapter is on the basics of electromagnetism needed for further understanding of advanced electromagnetics and its applications. Taking into account a number of contributions in this field [1]-[25], our material is given in a concise manner to remind the Readers only the main electromagnetic (EM) equations. Among them are those given for static electricity, stationary magnetism, and the Maxwell and wave equations. The boundary conditions and boundary value problems are considered and the reflection of plane waves is studied as an example of these problems. Additionally to this material traditionally included into the books on electromagnetism, the motion of charged particles and dipoles is considered from the classical and semi-classical point of view, and new EMquantum- mechanical equations based on the use of the Hertz vectors and the particle wave functions are introduced. References -75. Figures -13. Pages -49.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maxwell, J.C.: A Treatise on Electricity and Magnetism. Dover (1954)

    Google Scholar 

  2. Heaviside, O.: Electromagnetic Waves. Taylor & Francis (1889), http://www.archive.org

  3. Jackson, J.D.: Classical Electrodynamics. John Wiley & Sons (1999)

    Google Scholar 

  4. Balanis, C.A.: Advanced Engineering Electromagnetics. John Wiley (1989)

    Google Scholar 

  5. Smythe, W.R.: Static and Dynamic Electricity. McGraw-Hill (1968)

    Google Scholar 

  6. Stewart, J.V.: Intermediate Electromagnetic Theory. World Scientific (2001)

    Google Scholar 

  7. Shekunoff, S.A.: Electromagnetic Field. Blaisdell Publ. Comp. (1963)

    Google Scholar 

  8. Marcuvitz, N.: Waveguide Handbook. Inst. of Eng. and Techn. Publ. (1986)

    Google Scholar 

  9. Mashkovzev, B.M., Zibisov, K.N., Emelin, B.F.: Theory of Waveguides. Nauka, Moscow (1966) (in Russian)

    Google Scholar 

  10. Katsenelenbaum, B.Z.: High-frequency Electrodynamics. Wiley-vch Verlag Gmbh (2006)

    Google Scholar 

  11. Vaganov, R.B., Katsenelenbaum, B.Z.: Foundation of the Diffraction Theory. Nauka, Moscow (1982) (in Russian)

    Google Scholar 

  12. Nikolskyi, V.V., Nikolskaya, T.I.: Electrodynamics and Wave Propagation. Nauka, Moscow (1987) (in Russian)

    Google Scholar 

  13. Collin, R.E.: Foundation of Microwave Engineering. John Wiley & Sons (2001)

    Google Scholar 

  14. Felsen, L.B., Marcuvitz, N.: Radiation and Scattering of Waves. Prentice-Hall (1973)

    Google Scholar 

  15. Taflove, A.T., Hagness, S.C.: Computational Electrodynamics. Artech House (2005)

    Google Scholar 

  16. Sadiku, M.N.O.: Numerical Techniques in Electromagnetics. CRC Press (2001)

    Google Scholar 

  17. Lewin, L.: Theory of Waveguides. Newnes-Buttertworths, London (1975)

    Google Scholar 

  18. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium. IEEE Trans., Antennas Propag. 14, 302–307 (1966)

    MATH  Google Scholar 

  19. Mittra, R. (ed.): Computer Techniques for Electromagnetics. Pergamon Press (1973)

    Google Scholar 

  20. Garg, R.: Analytical and Computational Methods in Electromagnetics. Artech House (2009)

    Google Scholar 

  21. Nikolskii, V.V.: Variational Methods for Inner Boundary Value Problems of Electrodynamics. Nauka Publ., Moscow (1967) (in Russian)

    Google Scholar 

  22. Harrington, R.F.: Field Computation by Moment Methods. IEEE Press (1993)

    Google Scholar 

  23. Hoffmann, R.K.: Handbook of Microwave Integrated Circuits. Artech House (1987)

    Google Scholar 

  24. Kompa, G.: Practical Microstrip Design and Applications. Artech House (2005)

    Google Scholar 

  25. Edwards, T.C., Steer, M.B.: Foundation of Interconnect and Microstrip Design. J. Wiley & Sons, Ltd. (2000)

    Google Scholar 

  26. Whites, K.W.: Visual Electromagnetics for MathCAD: Electronic Supplement for Introduction to Electromagnetics of K.W. Whites. McGraw-Hill (1998)

    Google Scholar 

  27. Marcelli, R., Nikitov, S.A. (eds.): Nonlinear Microwave Signal Processing: Towards a New Range of Devices. NATO ASI Series, 3. High Technology, vol. 20. Kluwer Academic Publishing, Dordrecht (1996)

    Google Scholar 

  28. Golovanov, Makeeva, G.S.: Simulations of Electromagnetic Wave Interactions with Nano-grids in Microwave and Terahertz Frequencies. Nauka (in print, 2012) (in Russian)

    Google Scholar 

  29. Makeeva, G.S., Golovanov, O.A., Pardavi-Horvath, M., Kouzaev, G.A.: A method of autonomous blocks partially filled by nonlinear gyromagnetic medium for nanoelectromagnetic applications. In: Proc. 8th Int. Conf. Appl. of El. Eng., Houston, USA, April 30-May 2, pp. 204–207 (2009)

    Google Scholar 

  30. Makeeva, G.S., Golovanov, O.A., Pardavi-Horvath, M., Kouzaev, G.A.: Decomposition approach to nonlinear diffraction problems of nanoelectromagnetics and nanophotonics using autonomous blocks with Floquet channels. In: Proc. 7th Int. Conf. Appl. El. Eng., AEE 2008, pp. 31–35 (2008)

    Google Scholar 

  31. Deleonibus, S. (ed.): Electronic Device Architectures for the Nano-CMOS Era. World Sci (2008)

    Google Scholar 

  32. Tour, J.M.: Molecular Electronics. World Sci. (2003)

    Google Scholar 

  33. Kouzaev, G.A.: Hertz vectors and the electromagnetic-quantum equations. Modern Phys. Lett. B 24, 2117–2129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Levine, H., Moniz, E.J., Sharp, D.H.: Motion of extended charges in classical electrodynamics. Am. J. Phys. 45, 75–78 (1977)

    Article  Google Scholar 

  35. Rohlich, F.: The dynamics of a charged particle and the electron. Am. J. Phys. 65, 1051–1056 (1997)

    Article  Google Scholar 

  36. Kroemer, H.: Quantum Mechanics. Prentice-Hall (1994)

    Google Scholar 

  37. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topological Methods in Nonlinear Analysis 11, 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Ginbre, J., Velo, G.: Long range scattering for the Maxwell-Schrödinger system with large magnetic field data and small Schrödinger data, vol. 42, pp. 421-459. Publ. RIMS, Kyoto Univ. (2006)

    Google Scholar 

  39. Yang, J., Sui, W.: Solving Maxwell-Schrödinger equations for analyses of nano-scale devices. In: Proc. 37th Eur. Microw. Conf., pp. 154–157 (2007)

    Google Scholar 

  40. Pierantoni, L., Mencarelli, D., Rozzi, T.: A new 3-D transmission line matrix scheme for the combined Schrödinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices. IEEE Trans., Microw. Theory Tech. 56, 654–662 (2008)

    Article  Google Scholar 

  41. Pieratoni, L., Mencarelli, D., Rozzi, T.: Boundary immitance operators for the Schrödinger-Maxwell problem of carrier dynamics in nanodevices. IEEE Trans., Microw. Theory Tech. 57, 1147–1155 (2009)

    Article  Google Scholar 

  42. Mastorakis, N.E.: Solution of the Schrödinger-Maxwell equations via finite elements and genetic algorithms with Nelder-Mead. WSEAS Trans. Math. 8, 169–176 (2009)

    MathSciNet  Google Scholar 

  43. Attaf, M.T.: Error analysis and Hertz vector approach for an electromagnetic interaction between a line current and a conducting plate. Int. J. Numer. 16, 249–260 (2003)

    Article  MATH  Google Scholar 

  44. Gough, W.: An alternative approach to the Hertz vector. PIER 12, 205–217 (1996)

    Google Scholar 

  45. Sein, J.J.: Solutions to time-harmonic Maxwell equations with a Hertz vector. Am. J. Phys. 57, 834–839 (1989)

    Article  MathSciNet  Google Scholar 

  46. Born, M., Wolf, E.: Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press (2000)

    Google Scholar 

  47. Nowakowski, M.: The quantum mechanical current of the Pauli equation. Am. J. Phys. 67, 916–919 (1999)

    Article  Google Scholar 

  48. Esteban, M.J., Georgiev, V., Séré, E.: Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. 4, 265–281 (1996)

    Article  MATH  Google Scholar 

  49. Bao, W., Li, X.-G.: An efficient and stable numerical method for the Maxwell-Dirac system. J. Comput. Phys. 199, 663–687 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Balasubramanian, K.: Relativistic Effects in Chemistry, Part A. John Wiley & Sons, Inc. (1997)

    Google Scholar 

  51. Kapranov, S.A., Kouzaev, G.A.: Relaxation mechanism of microwave heating of near-critical polar gases. Int. J. Thermal Sciences 49(12), 2319–2330 (2010)

    Article  Google Scholar 

  52. Vekstein, G.E.: On the electromagnetic force on a moving dipole. Eur. J. Phys. 18, 113–117 (1997)

    Article  Google Scholar 

  53. Kholometskii, I.L., Missevitch, O.V., Yarman, T.: Electromagnetic force on a moving dipole. Eur. J. Phys. 32, 873–881 (2011)

    Article  Google Scholar 

  54. Gao, Z.: Nonlinear pondermotive force by low frequency waves and nonresonant current drive. Physics of Plasmas 13, 112307-1–112307-6 (2006)

    Google Scholar 

  55. Dodin, I.Y., Fisch, N.J.: Particle manipulation with nonadiabatic pondermotive forces. Physics of Plasmas 14, 055901-1–055901-6 (2007)

    Article  Google Scholar 

  56. Eichmann, U., Nubbemeyer, T., Rottke, H., et al.: Acceleration of neutral atoms in strong strong short-pulse laser field. Nature 461, 1261–1264 (2009)

    Article  Google Scholar 

  57. Block, P.A., Bohac, E.A., Miller, R.E.: Spectroscopy of pendular states: The use of molecular complexes in achieving orientation. Phys. Rev. Lett. 68, 1303–1306 (1992)

    Article  Google Scholar 

  58. Kapranov, S.V., Kouzaev, G.A.: Stochasticity in nonlinear pendulum motion of dipoles in electric field. In: Recent Advances in Systems Engineering and Applied Mathematics, pp. 107–111 (2008)

    Google Scholar 

  59. Zaslavsky, G.M.: Physics of Chaos in Hamilton Systems. Imperial College Press (1998)

    Google Scholar 

  60. Zaslavsky, G.M., Sagdeev, R.Z., Usikov, D.A., et al.: Weak Chaos and Quasi-Regular Patterns. Cambridge University Press (1991)

    Google Scholar 

  61. Chirikov, B.V.: Nonlinear Resonance. Novosibirsk State University Publ. (1977) (in Russian)

    Google Scholar 

  62. Fradkov, I.: Cybernetical Physics. Springer (2006) (in Russian)

    Google Scholar 

  63. Barkai, E., Brown, F., Orrit, M., Yang, H. (eds.): Theory and Evaluation of Single Molecule Signals. World Scientific (2008)

    Google Scholar 

  64. Wu, G.: Nonlinearity and Chaos in Molecular Vibrations. Elsevier (2005)

    Google Scholar 

  65. Leontovich, M.A.: Investigation on Radiowave Propagation, Part II. Academy of Sci., Moscow (1948)

    Google Scholar 

  66. Wang, D.-S.: Limits and validity of the impedance boundary condition on penetrable surfaces. IEEE Trans., Antennas Propag. 35, 453–457 (1987)

    Article  Google Scholar 

  67. Dybdal, R.B., Peters, L., Peake, W.H.: Rectangular waveguides with impedance walls. IEEE Trans., Microw. Theory Tech. 19, 2–9 (1971)

    Article  Google Scholar 

  68. Senior, T.B.A.: Approximate boundary condition. IEEE Trans., Antennas Propag. 29, 826–829 (1981)

    Article  Google Scholar 

  69. Karlsson, I.: Approximate boundary conditions for thin structures. IEEE Trans., Antennas Propag. 57, 144–148 (2009)

    Article  MathSciNet  Google Scholar 

  70. Alshits, V.I., Lyubimov, V.N.: Generalization of the Leontovich approximation for electromagnetic fields on a dielectric-metal interface. Physics-Uspekhi 52, 815–820 (2009)

    Article  Google Scholar 

  71. Kurushin, E.P., Nefedov, E.I., Fialkovskyi, A.T.: Diffraction of Waves on Anisotropic Structures. Nauka, Moscow (1975) (in Russian)

    Google Scholar 

  72. Kurushin, E.P., Nefedov, E.I.: Electrodynamics of Anisotropic Waveguiding Structures. Nauka, Moscow (1983) (in Russian)

    Google Scholar 

  73. Kontorovich, M.I., Astrakhan, M.I., Akimov, V.P., et al.: Electrodynamics of Grid Structures. Radio i Svayaz, Moscow (1987) (in Russian)

    Google Scholar 

  74. Yuferev, S.V.: Surface Impedance Boundary Conditions. CRC Press (2010)

    Google Scholar 

  75. Demarest, K.R.: Engineering Electromagnetics. Prentice-Hall Int. (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guennadi A. Kouzaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Kouzaev, G.A. (2013). Basic Electromagnetics. In: Applications of Advanced Electromagnetics. Lecture Notes in Electrical Engineering, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30310-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30310-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30309-8

  • Online ISBN: 978-3-642-30310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics