Skip to main content

Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation

  • Chapter
  • First Online:
Matrix Information Geometry

Abstract

This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. Firstly, the existence and uniqueness results of local medians are given. In order to compute medians in practical cases, we propose a subgradient algorithm and prove its convergence. After that, Fréchet medians are considered. We prove their statistical consistency and give some quantitative estimations of their robustness with the aid of upper curvature bounds. We also show that, in compact Riemannian manifolds, the Fréchet medians of generic data points are always unique. Stochastic and deterministic algorithms are proposed for computing Riemannian p-means. The rate of convergence and error estimates of these algorithms are also obtained. Finally, we apply the medians and the Riemannian geometry of Toeplitz covariance matrices to radar target detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afsari, B.: Riemannian \(L^p\) center of mass: existence, uniqueness, and convexity. In: Proceedings of the American Mathematical Society, S 0002-9939(2010)10541-5, Article electronically published on 27 Aug 2010

    Google Scholar 

  2. Afsari, B., et al.: On the convergence of gradient descent for finding the Riemannian center of mass, arXiv:1201.0925v1 (2011)

    Google Scholar 

  3. Amari, S., Cichocki, A.: Information geometry of divergence functions. Bull. Pol. Acad. Sci. Tech. Sci. 58(1), 183–195 (2010)

    Google Scholar 

  4. Arnaudon, M., Li, X.M.: Barycenters of measures transported by stochastic flows. Ann. probab. 33(4), 1509–1543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnaudon, M., Dombry, C., Phan, A., Yang, L.: Stochastic algorithms for computing means of probability measures. Stoch. Process. Appl. 122, 1437–1455

    Google Scholar 

  6. Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center, hal-00560187-version 2 (2012), to appear in Computational Geometry.

    Google Scholar 

  7. Arnaudon, M., Nielsen, F.: Medians and means in Finsler geometry. J. Comput. Math. 15, 23–37 (2012)

    Google Scholar 

  8. Barbaresco, F.: Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices and information geometry, In: IEEE International Radar Conference (2008)

    Google Scholar 

  9. Barbaresco, F.: Interactions between symmetric Cone and information geometries, ETVC’08. In: Springer Lecture Notes in Computer Science vol. 5416, pp. 124–163 (2009)

    Google Scholar 

  10. Barbaresco, F., Bouyt, G.: Espace Riemannien symétrique et géométrie des espaces de matrices de covariance : équations de diffusion et calculs de médianes. In: GRETSI’09 Conference, Dijon, Sept 2009

    Google Scholar 

  11. Barbaresco, F.: New foundation of radar Doppler signal processing based on advanced differential geometry of symmetric spaces: Doppler matrix CFAR and radar application. Radar’09 Conference, Bordeaux, Oct 2009

    Google Scholar 

  12. Barbaresco, F.: Annalyse Doppler: régularisation d’un problème inverse mal posé, Support de cours

    Google Scholar 

  13. Barbaresco, F.: Science géométrique de lInformation : Géométrie des matrices de covariance, espace métrique de Fréchet et domaines bornés homogénes de Siegel, Conférence GRETSI’11, Bordeaux, Sept 2011

    Google Scholar 

  14. Barbaresco, F.: Robust statistical radar processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP processing in siegel homogeneous bounded domains. In: Proceedings of IRS’11, International Radar Conference, Leipzig, Sept 2011

    Google Scholar 

  15. Barbaresco, F.: Geometric radar processing based on Fréchet distance : information geometry versus optimal transport theory. In: Proceedings of IRS’11, International Radar Conference, Leipzig, Sept 2011

    Google Scholar 

  16. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds, I. Ann. Stat. 31(1), 1–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds, arXiv: 1111.5280v2 (2012)

    Google Scholar 

  18. Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)

    MATH  Google Scholar 

  19. Buss, S.R., Fillmore, J.P.: Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 95–126 (2001)

    Article  Google Scholar 

  20. Burbea, J., Rao, C.R.: Differntial metrics in probability spaces, Probab. Math. Stat. 3, Fasc. 2, 241–258 (1984)

    Google Scholar 

  21. Charlier, B.: Necessary and sufficient condition for the existence of a Fréchet mean on the circle, hal-00620965, version 1 (2011)

    Google Scholar 

  22. Drezner, Z., Wesolowsky, G.O.: Facility location on a sphere. J. Opl. Res. Soc. 29(10), 997–1004 (1978)

    Google Scholar 

  23. Drezner, Z.: On location dominance on spherical surfaces. Oper. Res. 29(6), 1218–1219 (1981)

    Google Scholar 

  24. Emery, M., Mokobodzki, G.: Sur le barycentre d’une probabilité dans une variété, Séminaire de Probabilités-XXV. In: Lecture Notes in Mathematics, vol. 1485, pp. 220–233. Springer, Berlin (1991)

    Google Scholar 

  25. Fletcher, P.T., et al.: The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage 45, S143–S152 (2009)

    Article  Google Scholar 

  26. Fréchet, M.: Les éléments aléatoires de natures quelconque dans un espace distancié, Annales de l’I.H.P., tome 10, n\(^{o}\)4, pp. 215–310 (1948)

    Google Scholar 

  27. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Google Scholar 

  28. Kendall, W.S.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. (3) 61(2), 371–406 (1990)

    Google Scholar 

  29. Noda, R., Sakai, T., Morimoto, M.: Generalized Fermat’s problem. Canad. Math. Bull. 34(1), 96–104 (1991)

    Google Scholar 

  30. Picard, J.: Barycentres et martingales sur une variété. Ann. Inst. H. Poincaré Probab. Statist. 30(4), 647–702 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Sahib, A.: Espérance d’une variable aléatoire à valeur dans un espace métrique, Thèse de l’Université de Rouen (1998)

    Google Scholar 

  32. Shima, H.: The Geometry of Hessian Structures. World Scientific Publishing, Hackensack (2007)

    Google Scholar 

  33. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Google Scholar 

  34. Yang, L.: Riemannian median and its estimation. LMS J. Comput. Math. 13, 461–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, L.: Some properties of Fréchet medians in Riemannian manifolds, preprint hal-00633203, version 2 (2011)

    Google Scholar 

  36. Yang, L.: Médianes de mesures de probabilité dans les variétés riemanniennes et applications à la détection de cibles radar, Thèse de l’Université de Poitiers, tel-00664188, version 1 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Arnaudon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arnaudon, M., Barbaresco, F., Yang, L. (2013). Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation. In: Nielsen, F., Bhatia, R. (eds) Matrix Information Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30232-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30232-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30231-2

  • Online ISBN: 978-3-642-30232-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics