Skip to main content

Navigating Through an Asymmetrical Brain: Lateralisation and Homing in Pigeon

  • Chapter
  • First Online:
Behavioral Lateralization in Vertebrates

Abstract

The ability of homing pigeons to find their way back home after displacement has fascinated researchers for more than a century. Pigeons rely on a map-and-compass system to navigate, especially when released from an unfamiliar site. Olfactory cues and the sun’s azimuth provide, respectively, primarily a navigational map and compass information to accomplish this task. Magnetic cues provide subsidiary compass information. In addition, pigeons can also rely on a spatial representation of the visual landmarks when navigating over familiar terrains. The neural structures underlying these capabilities have been thoroughly investigated. Taking advantage of the neuroanatomical organisation of the avian brain, several studies have addressed lateralisation (i.e. the functional contribution of the left and the right sides of the brain) of homing behaviour. A survey of the most recent contribution to this topic will be presented, with particular attention to the olfactory system, the visual system and the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Dorsal arcopallium

CA:

Commissura tectalis

CT:

Commissura tectalis

CDL:

Dorsolateral corticoid arena

DSD:

Decussatio supraoptica dorsalis

Cpi:

Piriform cortex

CPP:

Prepiriform cortex

E:

Entopallium

Gld:

Nucleus geniculatus lateralis, pars doralis

HD:

Hyperpallium densocellulare

HF:

Hippocampal formation

HL:

Hyperpallium laterale

MSt:

Medial striatum

NFL:

Frontolateral nidopallium

OB:

Olfactory bulb

Rt:

Nucleus rotundus

SM:

Medial septum

TSM:

Tractus septomesencephalicus

TeO:

Tectum opticum

TnA:

Nucleus taeniae

W:

Wulst

References

  • Atoij Y, Wild M (2006) Anatomy of the avian hippocampal formation. Rev Neurosci 17:3–15

    Google Scholar 

  • Benvenuti S, Gagliardo A (1996) Homing behaviour of pigeons subjected to unilateral zinc sulfate treatment of their olfactory mucosa. J Exp Biol 199:2531–2535

    PubMed  CAS  Google Scholar 

  • Bingman VP, Jones TJ (1994) Hippocampal lesions disrupt sun compass directional learning in homing pigeons. J Neurosci 14:6687–6694

    PubMed  CAS  Google Scholar 

  • Bingman VP, Mench JA (1990) Homing behaviour of hippocampus and parahipppocampus lesioned pigeons following short-distance releases. Behav Brain Res 40:227–238

    PubMed  CAS  Google Scholar 

  • Bingman VP, Bagnoli P, Ioalè P, Casini G (1984) Homing behaviour in pigeons after telencephalic ablations. Brain Behav Evol 24:94–106

    PubMed  CAS  Google Scholar 

  • Bingman VP, Ioalè P, Casini G, Bagnoli P (1987) Impaired retention of preoperatively acquired spatial reference memory in homing pigeons following hippocampal ablation. Behav Brain Res 24:147–156

    PubMed  CAS  Google Scholar 

  • Bingman VP, Ioalè P, Casini G, Bagnoli P (1988) Hippocampal ablated homing pigeons show a persistent impairment in the time taken to return home. J Comp Physiol A 163:559–563

    Google Scholar 

  • Bingman VP, Casini G, Nocjar C, Jones TJ (1994) Connections of the piriform cortex in homing pigeons (Columba livia) studied with fast blue and WGA-HRP. Brain Behav Evol 43:206–218

    PubMed  CAS  Google Scholar 

  • Bingman VP, Gagliardo A, Hough GE, Ioalè P, Kahn MC, Siegel JJ (2005) The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integr Comp Biol 45:555–564

    PubMed  Google Scholar 

  • Bingman VP, Siegel JJ, Gagliardo A, Erichsen JT (2006a) Representing the richness of avian spatial cognition: properties of a lateralized homing pigeon hippocampus. Rev Neurosci 17:17–28

    PubMed  Google Scholar 

  • Bingman VP, Erichsen JT, Anderson JD, Good MA, Pearce JM (2006b) Spared feature-structure discrimination but diminished salience of environmental geometry in hippocampal-lesioned homing pigeons (Columba livia). Behav Neurosci 120:835–841

    PubMed  Google Scholar 

  • Biro D, Guilford T, Dawkins M (2003) Mechanisms of visually mediated site recognition by the homing pigeon. Anim Behav 65:115–122

    Google Scholar 

  • Biro D, Meade J, Guilford T (2004) Familiar route loyalty implies visual pilotage in the homing pigeon. Proc Natl Acad Sci USA 101:17440–17443

    PubMed  CAS  Google Scholar 

  • Bonadonna F, Holland R, Dall’Antonia L, Guilford T, Benvenuti S (2000) Tracking clock-shifted homing pigeons from familiar release sites. J Exp Biol 203:207–212

    Google Scholar 

  • Braithwaite V, Guilford T (1991) Viewing familiar landscapes affects pigeon homing. Proc Royal Soc Lond B 245:183–186

    Google Scholar 

  • Burt T, Holland R, Guilford T (1997) Further evidence for visual landmark involvement in the pigeon’s familiar area map. Anim Behav 53:1203–1209

    PubMed  Google Scholar 

  • Chappell J, Guilford T (1995) Homing pigeons primarily use the sun compass rather than fixed directional visual cues in an open-field arena food-searching task. Proc Royal Soc Lond B 260:59–63

    Google Scholar 

  • Chelazzi G, Pardi L (1972) Experiments on the homing behaviour of caged pigeons. Monit Zool Italy 6:63–73

    Google Scholar 

  • Cheng K, Spetch ML, Kelly DM, Bingman VP (2006) Small-scale spatial cognition in pigeons. Behav Process 72:115–127

    Google Scholar 

  • Clayton NS, Lee DW (1998) Memory and the hippocampus in food-storing birds. In: Balda RP, Pepperberg IM, Kamil AC (eds) Animal cognition in nature. Academic Press, San Diego

    Google Scholar 

  • Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc Royal Soc Lond B 274:1153–1158

    Google Scholar 

  • Diekamp B, Prior H, Ioalè P, Odetti F, Güntürkün O, Gagliardo A (2002) Effects of monocular viewing on orientation in an arena at the release site and homing performance in pigeons. Behav Brain Res 136:103–111

    PubMed  Google Scholar 

  • Fleissner G, Hoòtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    PubMed  CAS  Google Scholar 

  • Foà A, Bagnoli P, Giongo F (1986) Homing pigeons subjected to section of the anterior commissure can build up two olfactory maps in the deflector loft. J Comp Physiol A 159:465–472

    PubMed  Google Scholar 

  • Gagliardo A, Mazzotto M, Bingman VP (1996) Hipocampal lesion effects on learning strategies in homing pigeons. Proc Royal Soc Lond B 263:529–534

    Google Scholar 

  • Gagliardo A, Ioalè P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19:311–315

    PubMed  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Odetti F, Bingman VP (2001a) The ontogeny of the homing pigeon navigational map: evidence for a sensitive learning period. Proc Royal Soc Lond B 268:197–202

    CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Odetti F, Bingman VP, Siegel JJ, Vallortigara G (2001b) Hippocampus and homing in pigeons: left and right hemispheric differences in navigational map learning. Eur J Neurosci 13:1617–1624

    PubMed  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Odetti F (2001c) Role of visual cues for orientation at familiar sites by homing pigeons: an experiment in a circular arena. Proc Royal Soc Lond B 268:2065–2070

    CAS  Google Scholar 

  • Gagliardo A, Odetti F, Ioalè P, Bingman VP, Tuttle S, Vallortigara G (2002) Bilateral participation of the hippocampus in familiar landmark navigation by homing pigeons. Behav Brain Res 136:201–209

    PubMed  Google Scholar 

  • Gagliardo A, Odetti F, Ioalè P, Pecchia T, Vallortigara G (2005a) Functional asymmetry of left and right avian piriform cortex in homing pigeons’ navigation. Eur J Neurosci 22:189–194

    PubMed  Google Scholar 

  • Gagliardo A, Vallortigara G, Nardi D, Bingman VP (2005b) A lateralized avian hippocampus: preferential role of the left hippocampal formation in homing pigeon sun compass-based spatial learning. Eur J Neurosci 22:2549–2559

    PubMed  Google Scholar 

  • Gagliardo A, Odetti F, Ioalè P (2005c) Factors reducing the expected deflection in initial orientation in clock-shifted homing pigeons. J Exp Biol 208:469–478

    PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild JM (2006) Having the nerve to home: trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons. J Exp Biol 209:2888–2892

    PubMed  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Lipp HP, Dell’Omo G (2007a) Finding home: the final step of the pigeons’ homing process studied with a GPS data logger. J Exp Biol 210:1132–1138

    PubMed  Google Scholar 

  • Gagliardo A, Pecchia T, Savini M, Odetti F, Ioalè P, Vallortigara G (2007b) Olfactory lateralization in homing pigeons: initial orientation of birds receiving a unilateral olfactory input. Eur J Neurosci 25:1511–1516

    PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild M (2008) Navigational abilities of homing pigeons deprived of olfactory or trigeminally mediated magnetic information when young. J Exp Biol 211:2046–2051

    PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild JM (2009a) Navigational abilities of homing pigeons deprived of olfactory or trigeminally mediated magnetic information. J Exp Biol 212:3119–3124

    PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Dell’Omo G, Bingman VP (2009b) Hippocampal-dependent familiar area map supports corrective re-orientation following navigational error during pigeon homing: a GPS-tracking study. Eur J Neurosci 29:2389–2400

    PubMed  Google Scholar 

  • Gagliardo A, Filannino C, Ioalè P, Pecchia T, Wikelski M, Vallortigara G (2011a) Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs. J Exp Biol 214:593–598

    PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Filannino C, Wikelski M (2011b) Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with GPS data loggers. PLoS ONE 6(8):e22385

    PubMed  CAS  Google Scholar 

  • Griffin DR (1952) Bird navigation. Biol Rev Camb Philos Soc 27:359–400

    Google Scholar 

  • Güntürkün O (1997) Avian visual lateralization: a review. NeuroReport 8:3–11

    Google Scholar 

  • Hein CM, Engels S, Kishkinev D, Mouritsen H (2011) Robins have a magnetic compass in both eyes. Nature 471:E11–E12

    PubMed  Google Scholar 

  • Holland RS (2003) The role of visual landmarks in the avian familiar area map. J Exp Biol 206:1773–1778

    PubMed  Google Scholar 

  • Holland RA, Bonadona F, Dall’Antonia L, Benvenuti S, Burt de Perera T, Guilford TC (2000) Short distance phase shifts revisited: tracking clock-shifted homing pigeons (Rock dove Columba livia) close to the loft. Ibis 142:111–118

    Google Scholar 

  • Hough GE, Bingman VP (2004) Spatial response properties of homing pigeon hippocampal neurons: correlations with goal locations, movement between goals, and environmental context in a radial-arm arena. J Comp Physiol A 190:1047–1062

    Google Scholar 

  • Ioalè P, Gagliardo A, Bingman VP (2000) Hippocampal participation in navigational map learning in young homing pigeons is dependent on training experience. Eur J Neurosci 12:1–9

    Google Scholar 

  • Kahn M, Bingman VP (2004) Lateralization of spatial learning in the avian hippocampal formation. Behav Neurosci 118:333–344

    PubMed  Google Scholar 

  • Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68:102–106

    PubMed  CAS  Google Scholar 

  • Kelly DM, Kippenbrock S, Templeton J, Kamil AC (2008) Use of a geometric rule or absolute vectors: landmark use by Clark’s nutcrackers (Nucifraga columbiana). Brain Res Bull 76:293–299

    PubMed  CAS  Google Scholar 

  • Kelly DM, Chiandetti C, Vallortigara G (2011) Re-orienting in space: do animals use global or local geometry strategies? Biol Lett 7:372–375

    PubMed  Google Scholar 

  • Kramer G (1950) Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37:377–378

    Google Scholar 

  • Kramer G (1953) Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? J Ornithol 94:201–219

    Google Scholar 

  • Mazzotto M, Nacci L, Gagliardo A (1999) Homeward orientation of pigeons confined in a circular arena. Behav Process 46:217–225

    Google Scholar 

  • Meade J, Biro D, Guilford T (2005) Homing pigeons develop local route stereotypy. Proc Royal Soc Lond B 272:17–23

    Google Scholar 

  • Meade J, Biro D, Guilford T (2006) Route recognition in the homing pigeon, Columba livia. Anim Behav 72:975–980

    Google Scholar 

  • Mehlhorn J, Haastert B, Rehkämper G (2010) Asymmetry of different brain structures in homing pigeons with and without navigational experience. J Exp Biol 213:2219–2224

    PubMed  Google Scholar 

  • Mora CV, Walker M (2009) Do release-site biases reflect response to the earth’s magnetic field during position determination by homing pigeons? Proc Royal Soc Lond B 276:3295–3302

    Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MN (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    PubMed  CAS  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Staillecken J, Dirks P, Weiler R (2004) Cryptochromes and activity markers co-localize in bird retina during magnetic orientation. Proc Natl Acad Sci U S A 101:14294–14299

    PubMed  CAS  Google Scholar 

  • Nardi D, Bingman VP (2007) Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behav Brain Res 178:160–171

    PubMed  Google Scholar 

  • Odetti F, Ioalè P, Gagliardo A (2003) Development of the navigational map in homing pigeons: effects of flight experience on orientation performance. Anim Behav 66:1093–1099

    Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  • Papi F, Fiore L, Fiaschi V, Benvenuti S (1972) Olfaction and homing in pigeons. Monitore zool ital (N S) 6:85–95

    Google Scholar 

  • Patzke N, Manns M, Güntürkün O, Ioalè P, Gagliardo A (2010) Navigation-induced ZENK expression in the olfactory system of pigeons (Columba livia). Eur J Neurosci 31:2062–2072

    PubMed  Google Scholar 

  • Patzke N, Manns M, Güntürkün O (2011) Telencephalic organisation of the olfactory system in homing pigeons (Columba livia). J Neurosci 194:53–56

    CAS  Google Scholar 

  • Prior H (2006) Lateralization of spatial orientation in birds. In: Malashichev Y, Deckel AW (eds) Behavioral and morphological asymmetries in vertebrates. Landes Bioscience, Austin

    Google Scholar 

  • Prior H, Güntürkün O (2001) Parallel working memory for spatial location and food-related object-cues in foraging pigeons: binocular and lateralized monocular performance. Learn Mem 8:44–51

    PubMed  CAS  Google Scholar 

  • Prior H, Lingenauber F, Nitschke J, Güntürkün O (2002) Orientation and lateralized cue use in pigeons navigating a large indoor environment. J Exp Biol 205:1795–1805

    PubMed  Google Scholar 

  • Prior H, Wiltschko R, Stapput K, Güntürkün O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310

    PubMed  Google Scholar 

  • Rashid N, Andrew RJ (1989) Right hemisphere advantage for topographical orientation in the domestic chick. Neuropsychologia 27:937–948

    PubMed  CAS  Google Scholar 

  • Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27

    PubMed  CAS  Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L et al (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    PubMed  Google Scholar 

  • Rieke GK, Wenzel BM (1975) The ipsilateral olfactory projection field in the pigeon. In: Denton VD, Coghlan JP (eds) Olfaction and taste. Academic Press, New York

    Google Scholar 

  • Rieke GK, Wenzel BM (1978) Forebrain projections of the pigeon olfactory bulb. J Morphol 158:41–55

    PubMed  CAS  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    PubMed  CAS  Google Scholar 

  • Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralizaton. Cambridge University Press, Cambridge

    Google Scholar 

  • Schlund W (1992) Intra-nasal zinc sulphate irrigation in pigeons: effects on olfactory capabilities and homing. J Exp Biol 164:171–187

    CAS  Google Scholar 

  • Schlund W, Schmid J (1991) Auswirkungen von ZnSO4 auf die olfaktorische Wahrnehmung, die Anfangsorientierung und den Heimkehrerfolg von Brieftauben (Columba livia). Verh dt Zool Ges 84:360

    Google Scholar 

  • Schmid J, Schlund W (1993) Anosmia in ZnSO4 treated pigeons: loss of olfactory information during ontogeny and the role of site familiarity in homing experiments. J Exp Biol 185:3–49

    Google Scholar 

  • Shimizu T, Bowers AN, Budzynski C, Kahn MC, Bingman VP (2004) What does a pigeon brain look like during homing? Selective examination of ZENK expression in the telencephalon of pigeons navigating home. Behav Neurosci 118:845–851

    PubMed  CAS  Google Scholar 

  • Siegel JJ, Nitz D, Bingman VP (2005) Spatial-specificity of single-units in the hippocampal formation of freely moving homing pigeons. Hippocampus 15:26–40

    PubMed  Google Scholar 

  • Siegel JJ, Nitz D, Bingman VP (2006) Lateralized functional components of spatial cognition in the avian hippocampal formation: evidence from single-unit recordings in freely moving homing pigeons. Hippocampus 16:125–140

    PubMed  Google Scholar 

  • Tommasi L, Vallortigara G (2001) Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behav Neurosci 115:602–613

    PubMed  CAS  Google Scholar 

  • Tommasi L, Andrew RJ, Vallortigara G (2000) Eye use in search is determined by the nature of task in the domestic chick (Gallus gallus). Behav Brain Res 112:119–126

    PubMed  CAS  Google Scholar 

  • Tommasi L, Gagliardo A, Andrew RJ, Vallortigara G (2003) Separate processing mechanisms for encoding geometric and landmark information in the avian hippocampus. Eur J Neurosci 17:1695–1702

    PubMed  Google Scholar 

  • Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–370

    Google Scholar 

  • Ülrich C, Prior H, Duka T, Leshchins’ka I, Valenti P, Güntürkün O, Lipp HP (1999) Left-hemispheric superiority for visuospatial orientation in homing pigeons. Behav Brain Res 104:169–178

    PubMed  Google Scholar 

  • Valencia-Alfonso CE, Verhaal J, Güntürkün O (2009) Ascending and descending mechanisms of visual lateralization in pigeons. Phil Trans Royal Soc B 364:955–963

    Google Scholar 

  • Vallortigara G, Pagni P, Sovrano VA (2004) Separate geometric and non-geometric modules for spatial reorientation: evidence from a lopsided animal brain. J Cognitive Neurosci 16:390–400

    Google Scholar 

  • Vargas JP, Petruso EJ, Bingman VP (2004) Hippocampal formation is required for geometric navigation in pigeons. Eur J Neurosci 20:1937–1944

    PubMed  Google Scholar 

  • Von Hünerbein K, Hamann HJ, Ruter E, Wiltschko W (2000) A GPS-based system for recording the flight paths of birds. Naturwissenschaften 87:278–279

    Google Scholar 

  • Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeon’s vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Heidelberg

    Google Scholar 

  • Walcott C (1991) Magnetic maps in pigeons. In: Berthold P (ed) Orientation in birds. Birkhauser, Boston

    Google Scholar 

  • Walker MM (1999) Magnetic position determination by homing pigeons. J Theor Biol 197:271–276

    PubMed  Google Scholar 

  • Wallraff HG (1966) Über die Hebimfindeleistungen von Brieftauben nach Haltung in vershiedenartig abgeshiermten Volieren. Z Vergl Physiol 52:215–259

    Google Scholar 

  • Wallraff HG (1970) Weitere Volierenversuche mit Brieftauben: wahrscheinlicher einflussdynamischer Faktoren der Atmosphäre auf die Orientierung. Z Vergl Physiol 68:182–201

    Google Scholar 

  • Wallraff HG (1979) Goal-oriented and compass-oriented movements of displaced homing pigeons after confinement in differentially shielded aviaries. Behav Ecol Sociobiol 5:201–225

    Google Scholar 

  • Wallraff HG (2000) Simulated navigation based on observed gradients of atmospheric trace gases (models on pigeon homing, part 3). J Theor Biol 205:133–145

    PubMed  CAS  Google Scholar 

  • Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67:189–204

    Google Scholar 

  • Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer, Berlin

    Google Scholar 

  • Wikelski M, Kays RW, Kasdin NJ, Thorup K, Smith JA, Swenson GW (2011) Going wild: what a global small-animal tracking system could do for experimental biologists. J Exp Biol 210:181–186

    Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, Berlin

    Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693

    Google Scholar 

  • Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470

    PubMed  CAS  Google Scholar 

  • Wilzeck C, Prior H, Kelly DM (2009) Geometry and landmark representation by pigeons: evidence for species-differences in the hemispheric organization of spatial information processing? Eur J Neurosci 29:813–822

    PubMed  Google Scholar 

  • Wilzeck C, Wiltschko W, Güntürkün O, Wiltschko R, Prior H (2010) Lateralization of magnetic compass orientation in pigeons. J Royal Soc Interface 7:S235–S240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Pecchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pecchia, T., Gagliardo, A., Filannino, C., Ioalè, P., Vallortigara, G. (2013). Navigating Through an Asymmetrical Brain: Lateralisation and Homing in Pigeon. In: Csermely, D., Regolin, L. (eds) Behavioral Lateralization in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30203-9_8

Download citation

Publish with us

Policies and ethics