Skip to main content

Inner Regularization of Log-Concave Measures and Small-Ball Estimates

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2050))

Abstract

In the study of concentration properties of isotropic log-concave measures, it is often useful to first ensure that the measure has super-Gaussian marginals. To this end, a standard preprocessing step is to convolve with a Gaussian measure, but this has the disadvantage of destroying small-ball information. We propose an alternative preprocessing step for making the measure seem super-Gaussian, at least up to reasonably high moments, which does not suffer from this caveat: namely, convolving the measure with a random orthogonal image of itself. As an application of this “inner-thickening”, we recover Paouris’ small-ball estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard für positive konkave Funktionen. Acta Math. 79, 17–37 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.G. Bobkov, On concentration of distributions of random weighted sums. Ann. Probab. 31(1), 195–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ch. Borell, Convex measures on locally convex spaces. Ark. Mat. 12, 239–252 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, V.D. Milman, New volume ratio properties for convex symmetric bodies in \({\mathbb{R}}^{n}\). Invent. Math. 88, 319–340 (1987)

    Google Scholar 

  5. B. Fleury, Concentration in a thin euclidean shell for log-concave measures. J. Func. Anal. 259, 832–841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Fradelizi, Contributions à la géométrie des convexes. Méthodes fonctionnelles et probabilistes. Habilitation à Diriger des Recherches de l’Université Paris-Est Marne La Vallée (2008). http://perso%2Dmath.univ%2Dmlv.fr/users/fradelizi.matthieu/pdf/HDR.pdf

    Google Scholar 

  7. R.J. Gardner, The Brunn-Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39(3), 355–405 (2002)

    Google Scholar 

  8. A. Giannopoulos, G. Paouris, P. Valettas, On the existence of subgaussian directions for log-concave measures. Contemp. Math. 545, 103–122 (2011)

    Article  MathSciNet  Google Scholar 

  9. B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes. Pac. J. Math. 10, 1257–1261 (1960)

    Article  MATH  Google Scholar 

  10. O. Guédon, E. Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21(5), 1043–1068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Haberl, L p intersection bodies. Adv. Math. 217(6), 2599–2624 (2008)

    Google Scholar 

  12. B. Klartag, A central limit theorem for convex sets. Invent. Math. 168, 91–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Klartag, Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245, 284–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Klartag, On nearly radial marginals of high-dimensional probability measures. J. Eur. Math. Soc. 12, 723–754 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Klartag, E. Milman, Centroid bodies and the logarithmic Laplace transform a unified approach. J. Func. Anal. 262(1), 10–34 (2012)

    Google Scholar 

  16. H. König, V.D. Milman, in On the Covering Numbers of Convex Bodies. Geometrical Aspects of Functional Analysis (1985/86). Lecture Notes in Math., vol. 1267 (Springer, Berlin, 1987), pp. 82–95

    Google Scholar 

  17. E. Lutwak, G. Zhang, Blaschke-Santaló inequalities. J. Diff. Geom. 47(1), 1–16 (1997)

    MathSciNet  MATH  Google Scholar 

  18. V.D. Milman, Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés. C. R. Acad. Sci. Paris Sér. I Math. 302(1), 25–28 (1986)

    MathSciNet  MATH  Google Scholar 

  19. V.D. Milman, Entropy point of view on some geometric inequalities. C. R. Acad. Sci. Paris Sér. I Math. 306(14), 611–615 (1988)

    MathSciNet  MATH  Google Scholar 

  20. V.D. Milman, Isomorphic Symmetrizations and Geometric Inequalities. Geometric Aspects of Functional Analysis (1986/87). Lecture Notes in Math., vol. 1317 (Springer, Berlin, 1988), pp. 107–131

    Google Scholar 

  21. V.D. Milman, A. Pajor, Entropy and asymptotic geometry of non-symmetric convex bodies. Adv. Math. 152(2), 314–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, with an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  23. G. Paouris, Concentration of mass on convex bodies. Geom. Funct. Anal. 16(5), 1021–1049 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. 364, 287–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Paouris, On the existence of supergaussian directions on convex bodies. Mathematika (to appear).

    Google Scholar 

  26. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  27. C.A. Rogers, G.C. Shephard, The difference body of a convex body. Arch. Math. 8, 220–233 (1957)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Olivier Guédon and Vitali Milman for discussions. Bo’az Klartag was supported in part by the Israel Science Foundation and by a Marie Curie Reintegration Grant from the Commission of the European Communities. Emanuel Milman was supported by the Israel Science Foundation (grant no. 900/10), the German Israeli Foundation’s Young Scientist Program (grant no. I-2228-2040.6/2009), the Binational Science Foundation (grant no. 2010288), and the Taub Foundation (Landau Fellow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo’az Klartag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klartag, B., Milman, E. (2012). Inner Regularization of Log-Concave Measures and Small-Ball Estimates. In: Klartag, B., Mendelson, S., Milman, V. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2050. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29849-3_15

Download citation

Publish with us

Policies and ethics