Skip to main content

On the Distribution of the ψ2-Norm of Linear Functionals on Isotropic Convex Bodies

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2050))

Abstract

It is known that every isotropic convex body K in \({\mathbb{R}}^{n}\) has a “subgaussian” direction with constant \(r\,=\,O(\sqrt{\log n})\). This follows from the upper bound \(\vert {\Psi }_{2}(K){\vert }^{1/n}\,\leq \,\frac{c\sqrt{\log n}} {\sqrt{n}} {L}_{K}\) for the volume of the body Ψ 2(K) with support function \({h}_{{\Psi }_{2}(K)}(\theta ) :{=\sup }_{2\leq q\leq n}\frac{\|\langle \cdot,{\theta \rangle \|}_{q}} {\sqrt{q}}\). The approach in all the related works does not provide estimates on the measure of directions satisfying a ψ2-estimate with a given constant r. We introduce the function \({\psi }_{K}(t) := \sigma (\{\theta \in {S}^{n-1} : {h}_{{\Psi }_{2}(K)}(\theta )\leq \mathit{ct}\sqrt{\log n}{L}_{K}\})\) and we discuss lower bounds for ψ K (t), \(t\geq 1\). Information on the distribution of the ψ2-norm of linear functionals is closely related to the problem of bounding from above the mean width of isotropic convex bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.M. Ball, Logarithmically concave functions and sections of convex sets in \({\mathbb{R}}^{n}\). Studia Math. 88, 69–84 (1988)

    Google Scholar 

  2. S.G. Bobkov, F.L. Nazarov, in Large Deviations of Typical Linear Functionals on a Convex Body with Unconditional Basis. Stochastic Inequalities and Applications. Progr. Probab., vol. 56 (Birkhauser, Basel, 2003), pp. 3–13

    Google Scholar 

  3. S.G. Bobkov, F.L. Nazarov, in On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis, ed. by V. Milman, G. Schechtman. Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1807 (Springer, Berlin, 2003), pp. 53–69

    Google Scholar 

  4. J. Bourgain, in On the Distribution of Polynomials on High Dimensional Convex Sets. Lecture Notes in Math., vol. 1469 (Springer, Berlin, 1991), pp. 127–137

    Google Scholar 

  5. A. Giannopoulos, V.D. Milman, Mean width and diameter of proportional sections of a symmetric convex body. J. Reine Angew. Math. 497, 113–139 (1998)

    MathSciNet  MATH  Google Scholar 

  6. A. Giannopoulos, A. Pajor, G. Paouris, A note on subgaussian estimates for linear functionals on convex bodies. Proc. Am. Math. Soc. 135, 2599–2606 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Giannopoulos, G. Paouris, P. Valettas, On the existence of subgaussian directions for log-concave measures. Contemp. Math. 545, 103–122 (2011)

    Article  MathSciNet  Google Scholar 

  8. A. Giannopoulos, G. Paouris, P. Valettas, Ψ α-estimates for marginals of log-concave probability measures. Proc. Am. Math. Soc. 140, 1297–1308 (2012)

    Google Scholar 

  9. M. Hartzoulaki, Probabilistic Methods in the Theory of Convex Bodies, PhD Thesis, University of Crete (2003)

    Google Scholar 

  10. R. Kannan, L. Lovasz, M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13, 541–559 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Klartag, On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Klartag, Uniform almost sub-gaussian estimates for linear functionals on convex sets. Algebra i Analiz (St. Petersburg Math. J.) 19, 109–148 (2007)

    Google Scholar 

  13. B. Klartag, E. Milman, Centroid bodies and the logarithmic Laplace transform – A unified approach. J. Funct. Anal. 262 10–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Klartag, R. Vershynin, Small ball probability and Dvoretzky theorem. Israel J. Math. 157(1), 193–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Latala, K. Oleszkiewicz, Small ball probability estimates in terms of width. Studia Math. 169, 305–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Litvak, V.D. Milman, G. Schechtman, Averages of norms and quasi-norms. Math. Ann. 312, 95–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Lutwak, D. Yang, G. Zhang, L p affine isoperimetric inequalities. J. Diff. Geom. 56, 111–132 (2000)

    Google Scholar 

  18. V.D. Milman, A new proof of A. Dvoretzky’s theorem in cross-sections of convex bodies (Russian). Funkcional. Anal. i Prilozen. 5(4), 28–37 (1971)

    Google Scholar 

  19. V.D. Milman, A. Pajor, in Isotropic Position and Inertia Ellipsoids and Zonoids of the Unit Ball of a Normed n-Dimensional Space, ed. by J. Lindenstrauss, V.D. Milman. Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1376 (Springer, Berlin, 1989), pp. 64–104

    Google Scholar 

  20. V.D. Milman, G. Schechtman, in Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Math., vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  21. V.D. Milman, G. Schechtman, Global versus Local asymptotic theories of finite-dimensional normed spaces. Duke Math. J. 90, 73–93 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. V.D. Milman, S.J. Szarek, in A Geometric Lemma and Duality of Entropy. GAFA Seminar Notes. Lecture Notes in Math., vol. 1745 (Springer, Berlin, 2000), pp. 191–222

    Google Scholar 

  23. G. Paouris, in Ψ 2 -Estimates for Linear Functionals on Zonoids. Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1807 (Springer, Berlin, 2003), pp. 211–222

    Google Scholar 

  24. G. Paouris, On the Ψ 2-behavior of linear functionals on isotropic convex bodies. Studia Math. 168(3), 285–299 (2005)

    Google Scholar 

  25. G. Paouris, Concentration of mass on convex bodies. Geom. Funct. Anal. 16, 1021–1049 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Paouris, Small ball probability estimates for log–concave measures. Trans. Am. Math. Soc. 364, 287–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94 (1989)

    Google Scholar 

  28. P. Pivovarov, On the volume of caps and bounding the mean-width of an isotropic convex body. Math. Proc. Camb. Philos. Soc. 149, 317–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for useful comments regarding the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Giannopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giannopoulos, A., Paouris, G., Valettas, P. (2012). On the Distribution of the ψ2-Norm of Linear Functionals on Isotropic Convex Bodies. In: Klartag, B., Mendelson, S., Milman, V. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2050. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29849-3_13

Download citation

Publish with us

Policies and ethics