Skip to main content

A Non-standard Finite Element Method Based on Boundary Integral Operators

  • Conference paper
Large-Scale Scientific Computing (LSSC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7116))

Included in the following conference series:

Abstract

This paper provides an overview over our results on the construction and analysis of a non-standard finite element method that is based on the use of boundary integral operators for constructing the element stiffness matrices. This approach permits polyhedral element shapes as well as meshes with hanging nodes. We consider the diffusion equation and convection-diffusion-reaction problems as our model problems, but the method can also be generalized to more general problems like systems of partial differential equations. We provide a rigorous H 1- and L 2-error analysis of the method for smooth and non-smooth solutions. This a priori discretization error analysis is only done for the diffusion equation. However, our numerical results also show good performance of our method for convection-dominated diffusion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ciarlet, P.G.: The finite element method for elliptic problems. Studies in Mathematics and its Applications, vol. 4. North-Holland, Amsterdam (1987)

    Google Scholar 

  3. Copeland, D.M.: Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes. Int. J. Appl. Math. Comput. Sci. 5(1), 60–73 (2009)

    MathSciNet  Google Scholar 

  4. Copeland, D.M., Langer, U., Pusch, D.: From the Boundary Element Method to Local Trefftz Finite Element Methods on Polyhedral Meshes. In: Bercovier, M., Gander, M.J., Kornhuber, R., Widlund, O. (eds.) Domain Decomposition Methods in Science and Engineering XVIII. Lecture Notes in Computational Science and Engineering, vol. 70, pp. 315–322. Springer, Heidelberg (2009)

    Google Scholar 

  5. Costabel, M.: Symmetric Methods for the Coupling of Finite Elements and Boundary Elements. In: Brebbia, C., Wendland, W., Kuhn, G. (eds.) Boundary Elements IX, pp. 411–420. Springer, Heidelberg (1987)

    Google Scholar 

  6. Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  7. Gordon, D., Gordon, R.: Row scaling as a preconditioner for some nonsymmetric linear systems with discontinuous coefficients. J. Computational Applied Mathematics 234(12), 3480–3495 (2010)

    Article  MATH  Google Scholar 

  8. Hofreither, C.: L 2 error estimates for a nonstandard finite element method on polyhedral meshes. J. Numer. Math. 19(1), 27–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hofreither, C., Langer, U., Pechstein, C.: Analysis of a non-standard finite element method based on boundary integral operators. Electronic Transactions on Numerical Analysis 37, 413–436 (2010), http://etna.mcs.kent.edu/vol.37.2010/pp413-436.dir

    MathSciNet  MATH  Google Scholar 

  10. Hofreither, C., Langer, U., Pechstein, C.: A non-standard finite element method for convection-diffusion-reaction problems on polyhedral meshes. In: Proceedings of the Third Conference of the Euro-American Consortium for Promoting the Application of Mathematics in Technical and Natural Sciences. American Institute of Physics (2011)

    Google Scholar 

  11. Hsiao, G.C., Steinbach, O., Wendland, W.L.: Domain decomposition methods via boundary integral equations. Journal of Computational and Applied Mathematics 125(1-2), 521–537 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hsiao, G.C., Wendland, W.L.: Domain decomposition in boundary element methods. In: Glowinski, R., Kuznetsov, Y.A., Meurant, G., Périaux, J., Widlund, O.B. (eds.) Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Moscow, May 21-25, 1990, pp. 41–49. SIAM, Philadelphia (1991)

    Google Scholar 

  13. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  14. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Pechstein, C.: Shape-explicit constants for some boundary integral operators. Appl. Anal. (December 2011) (published online), doi:10.1080/00036811.2011.643781

    Google Scholar 

  17. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics, vol. 39. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  18. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008)

    Book  MATH  Google Scholar 

  19. Thrun, A.: Über die Konstanten in Poincaréschen Ungleichungen. Master’s thesis, Ruhr-Universität Bochum, Bochum (2003), http://www.ruhr-uni-bochum.de/num1/files/theses/da_thrun.pdf

  20. Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. In: Verh. d. 2. Intern. Kongr. f. Techn. Mech., Zürich, pp. 131–137 (1926)

    Google Scholar 

  21. Veeser, A., Verfürth, R.: Poincaré constants of finite element stars. IMA J. Numer. Anal. (2011), first published online May 30, doi:10.1093/imanum/drr011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hofreither, C., Langer, U., Pechstein, C. (2012). A Non-standard Finite Element Method Based on Boundary Integral Operators. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29843-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29842-4

  • Online ISBN: 978-3-642-29843-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics