Skip to main content

Abstract

Interval Taylor has been proposed in the sixties by the interval analysis community for relaxing continuous non-convex constraint systems. However, it generally produces a non-convex relaxation of the solution set. A simple way to build a convex polyhedral relaxation is to select a corner of the studied domain/box as expansion point of the interval Taylor form, instead of the usual midpoint. The idea has been proposed by Neumaier to produce a sharp range of a single function and by Lin and Stadtherr to handle n ×n (square) systems of equations.

This paper presents an interval Newton-like operator, called X-Newton, that iteratively calls this interval convexification based on an endpoint interval Taylor. This general-purpose contractor uses no preconditioning and can handle any system of equality and inequality constraints. It uses Hansen’s variant to compute the interval Taylor form and uses two opposite corners of the domain for every constraint.

The X-Newton operator can be rapidly encoded, and produces good speedups in constrained global optimization and constraint satisfaction. First experiments compare X-Newton with affine arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberth, O.: The Solution of Linear Interval Equations by a Linear Programming Method. Linear Algebra and its Applications 259, 271–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araya, I., Trombettoni, G., Neveu, B.: Exploiting Monotonicity in Interval Constraint Propagation. In: Proc. AAAI, pp. 9–14 (2010)

    Google Scholar 

  3. Araya, I., Trombettoni, G., Neveu, B.: A Contractor Based on Convex Interval Taylor. Technical Report 7887, INRIA (February 2012)

    Google Scholar 

  4. Baharev, A., Achterberg, T., Rév, E.: Computation of an Extractive Distillition Column with Affine Arithmetic. AIChE Journal 55(7), 1695–1704 (2009)

    Article  Google Scholar 

  5. Beaumont, O.: Algorithmique pour les intervalles. PhD thesis, Université de Rennes (1997)

    Google Scholar 

  6. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box Consistency. In: Proc. ICLP, pp. 230–244 (1999)

    Google Scholar 

  7. Bliek, C.: Computer Methods for Design Automation. PhD thesis, MIT (1992)

    Google Scholar 

  8. Chabert, G.: Techniques d’intervalles pour la résolution de systèmes d’intervalles. PhD thesis, Université de Nice–Sophia (2007)

    Google Scholar 

  9. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–1100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Figueiredo, L., Stolfi, J.: Affine Arithmetic: Concepts and Applications. Numerical Algorithms 37(1-4), 147–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldsztejn, A., Granvilliers, L.: A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions. Constraints (Springer) 15(2), 190–212 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker Inc. (1992)

    Google Scholar 

  13. Hansen, E.R.: On Solving Systems of Equations Using Interval Arithmetic. Mathematical Comput. 22, 374–384 (1968)

    Article  MATH  Google Scholar 

  14. Hansen, E.R.: Bounding the Solution of Interval Linear Equations. SIAM J. Numerical Analysis 29(5), 1493–1503 (1992)

    Article  MATH  Google Scholar 

  15. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers (1996)

    Google Scholar 

  16. Kreinovich, V., Lakeyev, A.V., Rohn, J., Kahl, P.T.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer (1997)

    Google Scholar 

  17. Lebbah, Y., Michel, C., Rueher, M.: An Efficient and Safe Framework for Solving Optimization Problems. J. Computing and Applied Mathematics 199, 372–377 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM Journal on Numerical Analysis 42(5), 2076–2097 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Y., Stadtherr, M.: LP Strategy for the Interval-Newton Method in Deterministic Global Optimization. Industrial & Engineering Chemistry Research 43, 3741–3749 (2004)

    Article  Google Scholar 

  20. McAllester, D., Van Hentenryck, P., Kapur, D.: Three Cuts for Accelerated Interval Propagation. Technical Report AI Memo 1542, Massachusetts Institute of Technology (1995)

    Google Scholar 

  21. Messine, F., Laganouelle, J.-L.: Enclosure Methods for Multivariate Differentiable Functions and Application to Global Optimization. Journal of Universal Computer Science 4(6), 589–603 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Moore, R.E.: Interval Analysis. Prentice-Hall (1966)

    Google Scholar 

  23. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM (2009)

    Google Scholar 

  24. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press (1990)

    Google Scholar 

  25. Neumaier, A., Shcherbina, O.: Safe Bounds in Linear and Mixed-Integer Programming. Mathematical Programming 99, 283–296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ninin, J., Messine, F., Hansen, P.: A Reliable Affine Relaxation Method for Global Optimization. research report RT-APO-10-05, IRIT (March 2010) (submitted)

    Google Scholar 

  27. Oettli, W.: On the Solution Set of a Linear System with Inaccurate Coefficients. SIAM J. Numerical Analysis 2(1), 115–118 (1965)

    MathSciNet  Google Scholar 

  28. Schaefer, T.J.: The Complexity of Satis ability Problems. In: Proc. STOC, ACM Symposium on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  29. Tawarmalani, M., Sahinidis, N.V.: A Polyhedral Branch-and-Cut Approach to Global Optimization. Mathematical Programming 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner Regions and Interval Linearizations for Global Optimization. In: AAAI, pp. 99–104 (2011)

    Google Scholar 

  31. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Vu, X.-H., Sam-Haroud, D., Faltings, B.: Enhancing Numerical Constraint Propagation using Multiple Inclusion Representations. Annals of Mathematics and Artificial Intelligence 55(3-4), 295–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Araya, I., Trombettoni, G., Neveu, B. (2012). A Contractor Based on Convex Interval Taylor. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds) Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol 7298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29828-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29827-1

  • Online ISBN: 978-3-642-29828-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics