Skip to main content

Towards the Limits of Cascaded Reversible (Quantum-Inspired) Circuits

  • Conference paper
Reversible Computation (RC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7165))

Included in the following conference series:

  • 863 Accesses

Abstract

Several prototypes and proofs of concept of reversible (quantum-inspired) digital circuits have been successfully realized these last years, proving that digital reversible dual-line pass-transistor technology may be used for reversible linear computations. In order for this new technology to be used in commercial applications, several questions have to be answerd first. In particular, the number of gates possibly cascaded, the maximum reachable frequency, the maximum acceptable delays and amplitude drops are the key issues discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Von Neumann, J.: Theory of self-reproducing automata, p. 66ss. University of Illinois Press, Urbana (1966)

    Google Scholar 

  3. Markov, I.: An introduction to reversible circuits. In: Proceedings of the 12th International Workshop on Logic and Synthesis, Laguna Beach, pp. 318–319 (May 2003)

    Google Scholar 

  4. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Design Automation Conference, San Francisco, pp. 270–275 (July 2009)

    Google Scholar 

  5. Wille, R., Drechsler, R.: Towards a design flow for reversible logic, 184 pages. Springer, Heidelberg (2010) ISBN:978-90-481-9578-7

    Book  MATH  Google Scholar 

  6. Van Rentergem, Y., De Vos, A.: Reversible full adders applying Fredkin gates. In: Proceedings of the 12th International Conference on MIXed DESign of Integrated Circuits and Systems (MIXDES), Kraków, pp. 179–184 (June 2005)

    Google Scholar 

  7. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  8. De Vos, A.: Reversible computing, 249 pages. Wiley-VCH (2010) ISBN:978-3-527-40992-1

    Google Scholar 

  9. Cuccaro, S., Draper, T., Moulton, D., Kutin, S.: A new quantum ripple-carry addition circuit. In: Proceedings of the 8th Workshop on Quantum Information Processing, Cambridge (June 2005); arXiv:quant-ph/0410184v1, 9 pages (2004)

    Google Scholar 

  10. Burignat, S., De Vos A.: Test of a majority-based reversible (quantum) 4 bits ripple-carry adder in adiabatic calculation. In: Proceedings of the 18th International Conference on MIXed DESign of Integrated Circuits and Systems (MIXDES), Gliwice, Poland, pp. 368–373 (2011)

    Google Scholar 

  11. Feynman, R.P.: Quantum mechanical computer. Optics News 11, 11–20 (1985)

    Article  Google Scholar 

  12. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (2004)

    Article  MathSciNet  Google Scholar 

  13. Burignat, S., Thomsen, M.K., Klimczak, M., Olczak, M., De Vos, A.: Interfacing Reversible Pass-Transistor CMOS Chips with Conventional Restoring CMOS Circuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 113–123. Springer, Heidelberg (2012)

    Google Scholar 

  14. Oklobdžija, V.G., Maksimović, D., Lin, F.: Pass-transistor adiabatic logic using single power-clock supply. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44(10), 842–846 (1997)

    Article  Google Scholar 

  15. Lim, J., Kim, D.-G., Chae, S.-I.: A 16-bit carry-lookahead adder using reversible energy recovery logic for ultra-low-energy systems. IEEE Journal of Solid-State Circuits 34(6), 898–903 (1999)

    Article  Google Scholar 

  16. Hang, G., Wu, X.: Improved structure for adiabatic CMOS circuits design. Microelectronics Journal 33, 403–407 (2002)

    Article  Google Scholar 

  17. Ziesler, C.H., Kim, J., Papaefthymiou, M.C.: Energy recovering ASIC design. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, pp. 133–138 (2003)

    Google Scholar 

  18. Alioto, M., Palumbo, G., Poli, M.: Evaluation of energy consumption in RC ladder circuits driven by a ramp input. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12(10), 1094–1107 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burignat, S., Olczak, M., Klimczak, M., De Vos, A. (2012). Towards the Limits of Cascaded Reversible (Quantum-Inspired) Circuits. In: De Vos, A., Wille, R. (eds) Reversible Computation. RC 2011. Lecture Notes in Computer Science, vol 7165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29517-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29517-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29516-4

  • Online ISBN: 978-3-642-29517-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics