Skip to main content

Changing the Gate Order for Optimal LNN Conversion

  • Conference paper
Reversible Computation (RC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7165))

Included in the following conference series:

Abstract

While several physical realization schemes have been proposed for future quantum information processing, most known facts suggest that quantum information processing should have intrinsic limitations; physically realizable operations would be only interaction between neighbor qubits. To use only such physically realizable operations, we need to convert a general quantum circuit into one for an so-called Linear Nearest Neighbor (LNN) architecture where any gates should be operated between only adjacent qubits. Thus, there has been much attention to develop efficient methods to design quantum circuits for an LNN architecture. Most of the existing researches do not consider changing the gate order of the original circuit, and thus the result may not be optimal. In this paper, we propose a method to convert a quantum circuit into one for an LNN architecture with the smallest number of SWAP gates. Our method improves the previous result for Approximate Quantum Fourier Transform (AQFT) by the state-of-the-art design method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ross, M., Oskin, M.: Quantum computing. Commun. ACM 51(7), 12–13 (2008)

    Article  Google Scholar 

  4. Fowler, A.G., Devitt, S.J., Hollenberg, L.C.: Implementation of shor’s algorithm on a linear nearest neighbour qubit array. Quantum Information and Computation 4(4), 4:237–4:251 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Takahashi, Y., Kunihiro, N., Ohta, K.: The quantum fourier transform on a linear nearest neighbor architecture. Quantum Information and Computation 7(4), 383–391 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Kutin, S.A.: Shor’s algorithm on a nearest-neighbor machine. Technical report, Asian Conference on Quantum Information Science (2007)

    Google Scholar 

  7. Choi, B.S., Meter, R.V.: Effects of interaction distance on quantum addition circuits. ArXiv e-prints (September 2008)

    Google Scholar 

  8. Fowler, A.G., Hill, C.D., Hollenberg, L.C.L.: Quantum-error correction on linear-nearest-neighbor qubit arrays. Phys. Rev. A 69(4), 042314 (2004)

    Article  Google Scholar 

  9. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient coversion o quantum circuits to a linear nearest neighbor architecture. Qnantum Information and Computation 11(1), 142–166 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Information Processing, 1–23 (2010), 10.1007/s11128-010-0201-2

    Google Scholar 

  11. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: International Symposium on Multiple Valued Logic, pp. 220–225 (May 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matsuo, A., Yamashita, S. (2012). Changing the Gate Order for Optimal LNN Conversion. In: De Vos, A., Wille, R. (eds) Reversible Computation. RC 2011. Lecture Notes in Computer Science, vol 7165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29517-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29517-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29516-4

  • Online ISBN: 978-3-642-29517-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics