Skip to main content

Interfacing Reversible Pass-Transistor CMOS Chips with Conventional Restoring CMOS Circuits

  • Conference paper
Reversible Computation (RC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7165))

Included in the following conference series:

Abstract

Recent progress on the prototyping of reversible digital circuits, have shown that adiabatic reversible dual-line pass-transistor logic can be used for special purpose applications in reversible computation. This, however, raises new issues regarding the compatibility between this adiabatic logic implementation and conventional CMOS logic. The greatest difficulty is brought by the difference in signal shape used by these two logic families. Whereas standard switching CMOS circuits are operated by rectangular pulses, dual-line pass-transistor reversible circuits are controlled by triangular or trapezoidal signals to ensure adiabatic switching of the transistors. This work proposes a simple technical solution that allows interfacing reversible pass-transistor logic with conventional CMOS logic, represented here by an FPGA embedded in a commercial Xilinx Spartan-3E board. All proposed solutions have successfully been tested, which enables the FPGA to perform calculations directly on a reversible chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Von Neumann, J.: Theory of self-reproducing automata, p. 66ss. University of Illinois Press, Urbana (1966)

    Google Scholar 

  3. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  4. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3-4), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feynman, R.P.: Quantum mechanical computer. Optics News 11, 11–20 (1985)

    Article  Google Scholar 

  6. Desoete, B., De Vos, A., Sibiński, M., Widerski, T.: Feynman’s reversible logic gates, implemented in silicon. In: Proceedings of the 6th International Conference on MIXed DESign of Integrated Circuits and Systems (MIXDES), Kraków, pp. 497–502 (June 1999)

    Google Scholar 

  7. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. International Journal of Unconventional Computing 4(1), 339–355 (2005)

    Google Scholar 

  8. Burignat, S., De Vos, A.: Test of a majority-based reversible (quantum) 4 bits ripple-carry adder in adiabatic calculation. In: Proceedings of the 18th International Conference on MIXed DESign of Integrated Circuits and Systems (MIXDES), Gliwice, Poland, pp. 368–373 (2011)

    Google Scholar 

  9. Amirante, E., Fischer, J., Lang, M., Bargagli-Stoffi, A., Berthold, J., Heer, C., Schmitt-Landsiedel, D.: An ultra low-power adiabatic adder embedded in a standard 0.13 μm CMOS environment. In: Proceedings of the 29th European Solid-State Circuits Conference (ESSCIRC 2003), pp. 599–602 (2003)

    Google Scholar 

  10. De Vos, A., Burignat, S., Thomsen, M.K.: Reversible implementation of a discrete integer linear transformation. Journal of Multiple-Valued Logic and Soft Computing 18(5), 25–35 (2011)

    Google Scholar 

  11. Cuccaro, S., Draper, T., Moulton, D., Kutin, S.: A new quantum ripple-carry addition circuit. In: Proceedings of the 8th Workshop on Quantum Information Processing, Cambridge (June 2005); arXiv:quant-ph/0410184v, 19 pages (2004)

    Google Scholar 

  12. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible Arithmetic Logic Unit for quantum arithmetic. Journal of Physics A: Mathematical and Theoretical 43, 382002ss (2010)

    Article  MathSciNet  Google Scholar 

  13. Xilinx: Spartan-3E FPGA Starter Kit Board User Guide, UG230 (v1.1), 166 pages, June 20 (2008)

    Google Scholar 

  14. Younis, S.G., Knight, J.T.F.: Asymptotically zero energy computing split-level charge recovery logic. In: Proceedings of the International Workshop in Low Power Design, pp.177–182 (1994)

    Google Scholar 

  15. Vieri, C.J.: Reversible computer engineering and architecture. PhD. Thesis, MIT 165 pages (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burignat, S., Thomsen, M.K., Klimczak, M., Olczak, M., De Vos, A. (2012). Interfacing Reversible Pass-Transistor CMOS Chips with Conventional Restoring CMOS Circuits. In: De Vos, A., Wille, R. (eds) Reversible Computation. RC 2011. Lecture Notes in Computer Science, vol 7165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29517-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29517-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29516-4

  • Online ISBN: 978-3-642-29517-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics