Skip to main content

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

In chronopotentiometry, a current pulse is applied to the working electrode and its resulting potential is measured against a reference electrode as a function of time. At the moment when the current is first applied, the measured potential is abruptly changed due to the iR loss, and after that it gradually changes, because a concentration overpotential is developed as the concentration of the reactant is exhausted at the electrode surface. If the current is larger than the limiting current, the required flux for the current cannot be provided by the diffusion process and, therefore, the electrode potential rapidly rises until it reaches the electrode potential of the next available reaction, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Y, Shin HC, Dong J, Liu M (2004) Nanostructured LiMn2O4 prepared by a glycine-nitrate process for lithium-ion batteries. Solid State Ion 171:25–31

    Article  CAS  Google Scholar 

  2. Shin HC, Pyun SI (2001) Investigation of lithium transport through lithium cobalt dioxide thin film sputter-deposited by analysis of cyclic voltammogram. Electrochim Acta 46:2477–2485

    Article  CAS  Google Scholar 

  3. Jung HR, Kim EJ, Park YJ, Shin HC (2011) Nickel–tin foam with nanostructured walls for rechargeable lithium battery. J Power Sources 196:5122–5127

    Article  CAS  Google Scholar 

  4. Shin HC, Liu M (2005) Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Adv Funct Mater 15:582–586

    Article  CAS  Google Scholar 

  5. Larcher D, Beaulieu LY, MacNeil DD, Dahn JR (2000) In situ X-ray study of the electrochemical reaction of Li with η-Cu6Sn5. J Electrochem Soc 147:1658–1662

    Article  CAS  Google Scholar 

  6. Fransson L, Nordstrom E, Edstrom K, Haggstrom L, Vaughey JT, Thackeray MM (2002) Structural transformations in Lithiated η-Cu6Sn5 electrodes probed by In situ Mössbauer spectroscopy and X-ray diffraction. J Electrochem Soc 149:A736–A742

    Article  CAS  Google Scholar 

  7. Choi YM, Pyun SI, Moon SI, Hyung YE (1998) A study of the electrochemical lithium intercalation behavior of porous LiNiO2 electrodes prepared by solid-state reaction and sol–gel methods. J Power Sources 72:83–90

    Article  CAS  Google Scholar 

  8. Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124:1569–1578

    Article  CAS  Google Scholar 

  9. Choi YM, Pyun SI, Bae JS, Moon SI (1995) Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes. J Power Sources 56:25–30

    Article  CAS  Google Scholar 

  10. Bae JS, Pyun SI (1995) Electrochemical lithium intercalation reaction of anodic vanadium oxide film. J Alloys Comp 217:52–58

    Article  CAS  Google Scholar 

  11. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  12. Crank J (1975) The mathematics of diffusion. Clarendon, Oxford

    Google Scholar 

  13. Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) Thermodynamic and mass transport properties of “LiAl”. J Electrochem Soc 126:2258–2266

    Article  CAS  Google Scholar 

  14. Shin HC, Pyun SI (1999) The kinetics of lithium transport through Li1-δCoO2 by theoretical analysis of current transient. Electrochim Acta 45:489–501

    Article  CAS  Google Scholar 

  15. Shin HC, Han JN, Pyun SI (1998) Fundamentals of current transient technique and their applications to interfacial electrochemistry. J Corros Sci Soc Korea 27:232–245

    CAS  Google Scholar 

  16. Striebel KA, Deng CZ, Wen SJ, Cairns EJ (1996) Electrochemical behavior of LiMn2O4 and LiCoO2 thin films produced with pulsed laser deposition. J Electrochem Soc 143:1821–1827

    Article  CAS  Google Scholar 

  17. Uchida T, Morikawa Y, Ikuta H, Wakihara M, Suzuki K (1996) Chemical diffusion coefficient of lithium in carbon fiber. J Electrochem Soc 143:2606–2610

    Article  CAS  Google Scholar 

  18. Sato H, Takahashi D, Nishina T, Uchida I (1997) Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions. J Power Sources 68:540–544

    Article  CAS  Google Scholar 

  19. Zhang D, Popov BN, White RE (2000) Modeling lithium intercalation of a single spinel particle under potentiodynamic control. J Electrochem Soc 147:831–838

    Article  CAS  Google Scholar 

  20. Choi YM, Pyun SI, Paulsen JM (1998) Lithium transport through porous Li1−δCoO2 electrode: analysis of current transient. Electrochim Acta 44:623–632

    Article  CAS  Google Scholar 

  21. Bae JS, Pyun SI (1996) Electrochemical lithium intercalation into and deintercalation from vanadium oxide electrode by using potentiostatic current transient technique. Solid State Ionics 90:251–260

    Article  CAS  Google Scholar 

  22. Pyun SI, Choi YM (1997) Electrochemical lithium intercalation into and de-intercalation from porous LiCoO2 electrode by using potentiostatic current transient technique. J Power Sources 68:524–529

    Article  CAS  Google Scholar 

  23. Pyun SI, Ryu YG (1998) Lithium transport through graphite electrodes that contain two stage phases. J Power Sources 70:34–39

    Article  CAS  Google Scholar 

  24. Pyun SI, Yang TH (1998) Theoretical analysis of hydrogen transport through an electrode at the coexistence of two hydrogen-poor and -rich phases based upon the concept of hydrogen trapping. J Electroanal Chem 441:183–189

    Article  CAS  Google Scholar 

  25. Kim DJ, Pyun SI (1998) Hydrogen transport through anodic WO3 films. Electrochim Acta 43:2341–2347

    Article  CAS  Google Scholar 

  26. Isidorsson J, Strømme M, Gahlin R, Niklasson GA, Granqvist CG (1996) Ion transport in porous Sn oxide films: cyclic voltammograms interpreted in terms of a fractal dimension. Solid State Commun 99:109–111

    Article  CAS  Google Scholar 

  27. Mattsson MS, Niklasson GA, Granqvist CG (1996) Fractal dimension of Li insertion electrodes studied by diffusion-controlled voltammetry and impedance spectroscopy. Phys Rev B 54:2968–2971

    Article  CAS  Google Scholar 

  28. Shin HC, Pyun SI (1999) An investigation of the electrochemical intercalation of lithium into a Li1−δCoO2 electrode based upon numerical analysis of potentiostatic current transients. Electrochim Acta 44:2235–2244

    Article  CAS  Google Scholar 

  29. Funabiki A, Inaba M, Abe T, Ogumi Z (1999) Nucleation and phase-boundary movement upon stage transformation in lithium–graphite intercalation compounds. Electrochim Acta 45:865–871

    Article  CAS  Google Scholar 

  30. Shin HC, Pyun SI, Kim SW, Lee MH (2001) Mechanisms of lithium transport through transition metal oxides studied by analysis of current transients. Electrochim Acta 46:897–906

    Article  CAS  Google Scholar 

  31. Shin HC, Pyun SI (2003) Modern aspects of electrochemistry no. 36. In: Vayenas CG, Conway BE, White RE (eds) Chapter 5 Mechanisms of lithium transport through transition metal oxides and carbonaceous materials. Kluwer/Plenum, New York

    Google Scholar 

  32. Shin HC, Liu M, Sadanadan B, Rao AM (2002) Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition. J Power Sources 112:216–221

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner L (1980) Electrochemical methods. Wiley, New York

    Google Scholar 

  34. Aoki K, Tokuda K, Matsuda H (1983) Theory of linear sweep voltammetry with finite diffusion space. J Electroanal Chem 146:417–424

    Article  CAS  Google Scholar 

  35. Ho C, Raistrick ID, Huggins RA (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350

    Article  CAS  Google Scholar 

  36. Cho HM, Choi WS, Go JY, Bae SE, Shin HC (2012) A study on time-dependent low temperature power performance of a lithium-ion battery. J Power Sources 198:273–280

    Article  CAS  Google Scholar 

  37. Choi YM, Pyun SI (1997) Effects of intercalation-induced stress on lithium transport through porous LiCoO2 electrode. Solid State Ionics 99:173–183

    Article  CAS  Google Scholar 

  38. Aurbach D, Levi MD, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L (1998) Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J Electrochem Soc 145:3024–3034

    Article  CAS  Google Scholar 

  39. Macdonald JR, Garber JA (1977) Analysis of impedance and admittance data for solids and liquids. J Electrochem Soc 124:1022–1030

    Article  CAS  Google Scholar 

  40. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  41. Bae JS, Pyun SI (1994) An a.c. impedance study of LiI-Al2O3 composite solid electrolyte. J Mater Sci Lett 13:573–576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pyun, SI., Shin, HC., Lee, JW., Go, JY. (2012). Electrochemical Methods. In: Electrochemistry of Insertion Materials for Hydrogen and Lithium. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29464-8_2

Download citation

Publish with us

Policies and ethics