Skip to main content

Five Physical Applications of the Inhomogeneous Generalized Epstein–Hurwitz Zeta Functions

  • Chapter
Ten Physical Applications of Spectral Zeta Functions

Part of the book series: Lecture Notes in Physics ((LNP,volume 855))

  • 1506 Accesses

Abstract

In this chapter some explicit applications to the regularization, by means of Hurwitz zeta-functions considered in previous chapters, of different problems which have appeared recently in the physical literature, are considered. This kind of zeta functions show up profusely in many applications of quantum physics where regularization techniques are needed; in particular, when one deals with a massive quantum field theory in a (totally or partially) compactified spacetime (spherical or toroidal compactification, for instance). Aside from the interest that a detailed mathematical study of these functions may have on its own (e.g., in number theory), what is actually needed for most physical applications is always the numerical value of these functions, and of their derivatives with respect to the main variable and some of the accompanying parameters, before proceeding with the analytical continuation of the functions and also with the treatment of the (possible) poles. This procedure has already been checked in several situations, where the result is usually given in terms of sums of Hurwitz zeta functions and, generically, under the form of asymptotic expansions. Actually, this situation has been described in some detail in Chap. 4 already. In the present one, five additional, completely different applications are dealt with. Namely, in the first section, the calculation of the Casimir energy corresponding to compact universes without boundary. In the second, the calculation of the sum over one-loop integrals which yields the cross section of a scattering process in a Kaluza–Klein model with spherical compactification. Another application is the study of the critical behavior of a field theory at non-zero temperature. As the fourth example of this chapter, the quantization of two-dimensional gravity by means of the Wheeler–De Witt equation is discussed. Finally, the last case considered is the use of the spectral zeta function for both scalar and vector fields on a spacetime with a noncommutative toroidal part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Actor, Class. Quantum Gravity 5, 1415 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S.K. Blau, M. Visser, A. Wipf, Nucl. Phys. B 310, 163 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Elizalde, J. Math. Phys. 35, 3308 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. E. Elizalde, Yu. Kubyshin, J. Phys. A 27, 7533 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. Cheng, M.W. Cole, W.F. Saam, J. Treiner, Phys. Rev. Lett. 67, 1007 (1991)

    Article  ADS  Google Scholar 

  6. M. Krech, S. Dietrich, Phys. Rev. Lett. 66, 345 (1991)

    Article  ADS  Google Scholar 

  7. M. Krech, S. Dietrich, Phys. Rev. Lett. 67, 1055 (1991)

    Article  ADS  Google Scholar 

  8. M. Krech, S. Dietrich, Phys. Rev. A 46, 1886 (1992)

    Article  ADS  Google Scholar 

  9. M. Krech, S. Dietrich, Phys. Rev. A 46, 1922 (1992)

    Article  ADS  Google Scholar 

  10. F. De Martini, G. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988)

    Article  ADS  Google Scholar 

  11. F. De Martini et al., Phys. Rev. A 43, 2480 (1991)

    Article  ADS  Google Scholar 

  12. W.I. Weisberger, Commun. Math. Phys. 112, 633 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. W.I. Weisberger, Nucl. Phys. B 284, 171 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Aurell, P. Salomonson, Commun. Math. Phys. 165, 233 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. C. Itzykson, J.-M. Luck, J. Phys. A 19, 211 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J.S. Dowker, R. Banach, J. Phys. A 11, 2255 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Candelas, S. Weinberg, Nucl. Phys. B 237, 397 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  18. G.W. Gibbons, J. Phys. A 11, 1341 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  19. E.J. Copeland, D.J. Toms, Nucl. Phys. B 255, 201 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  20. G.R. Shore, Ann. Phys. 128, 376 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  21. N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980)

    Google Scholar 

  22. I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (IOP Publishing, Boston and Philadelphia, 1992)

    Google Scholar 

  23. T. Inagaki, T. Kouno, T. Muta, Int. J. Mod. Phys. A 10, 2241 (1995)

    Article  ADS  Google Scholar 

  24. S. Carlip, Class. Quantum Gravity 11, 31 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Lang, Elliptic Functions, Grad. Text in Mathematics, vol. 112 (Springer, New York, 1987), Chap. 20

    Book  MATH  Google Scholar 

  26. T. Kubota, Elementary Theory of Eisenstein Series (Kodansha, Tokyo, and Wiley, New York, 1973)

    MATH  Google Scholar 

  27. A. Connes, M.R. Douglas, A. Schwarz, JHEP 9802, 003 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  28. M.R. Douglas, C. Hall, JHEP 9802, 008 (1998)

    Article  ADS  Google Scholar 

  29. N. Seiberg, E. Witten, JHEP 9909, 032 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  30. Y.-K.E. Cheung, M. Krogh, Nucl. Phys. B 528, 185 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. C.-S. Chu, P.-M. Ho, Nucl. Phys. B 550, 151 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. V. Schomerus, JHEP 9906, 030 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  33. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, JHEP 9902, 016 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  34. A.A. Bytsenko, A.E. Goncalves, S. Zerbini, Mod. Phys. Lett. A 16, 1479 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, Studies in Advanced Mathematics (CRC Press, Boca Raton, 1995)

    MATH  Google Scholar 

  36. A.A. Bytsenko, E. Elizalde, S. Zerbini, Phys. Rev. D 64, 105024 (2001)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Elizalde .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elizalde, E. (2012). Five Physical Applications of the Inhomogeneous Generalized Epstein–Hurwitz Zeta Functions. In: Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29405-1_6

Download citation

Publish with us

Policies and ethics