Skip to main content

Analyzing Dynamic Fitness Landscapes of the Targeting Problem of Chaotic Systems

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7248))

Included in the following conference series:

Abstract

Targeting is a control concept using fundamental properties of chaotic systems. Calculating the targeting control can be related to solving a dynamic optimization problem for which a dynamic fitness landscape can be formulated. We define the dynamic fitness landscape for the targeting problem and analyze numerically its properties. In particular, we are interested in the modality of the landscape and its fractal characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont (2005)

    MATH  Google Scholar 

  2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 2. Athena Scientific, Belmont (2007)

    Google Scholar 

  3. Bobbin, J., Yao, X.: Solving optimal control problems with a cost on changing control by evolutionary algorithms. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) Proc. 1997 IEEE International Conference on Evolutionary Computation (ICEC 1997), pp. 331–336. IEEE Press, Piscataway (1997)

    Chapter  Google Scholar 

  4. Bollt, E.M.: Targeting control of chaotic systems. In: Chen, G., Yu, X., Hill, D.J. (eds.) Chaos and Bifurcations Control: Theory and Applications, pp. 1–25. Springer, Berlin (2003)

    Google Scholar 

  5. Cai, X., Cui, Z.: Using stochastic dynamic step length particle swarm optimization to direct orbits of chaotic systems. In: Sun, F., Wang, Y., Lu, J., Zhang, B., Kinsner, W., Zadeh, L.A. (eds.) Proc. 9th IEEE Int. Conf. on Cognitive Informatics (ICCI 2010), pp. 194–198. IEEE Press (2010)

    Google Scholar 

  6. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: A survey. Control Engineering Practice 10, 1223–1241 (2002)

    Article  Google Scholar 

  7. Gao, W.F., Liu, S.Y., Jiang, F.: An improved artificial bee colony algorithm for directing orbits of chaotic systems. Applied Mathematics and Computation 218, 3868–3879 (2011)

    Article  MathSciNet  Google Scholar 

  8. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  MATH  Google Scholar 

  9. Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. London A 292, 419–448 (1979)

    Article  Google Scholar 

  10. Hoshino, T., Mitsumoto, D., Nagano, T.: Fractal fitness landscape and loss of robustness in evolutionary robot navigation. Autonomous Robots 5, 199–213 (1998)

    Article  Google Scholar 

  11. Iplikci, S., Denizhan, Y.: Targeting in dissipative chaotic systems: A survey. Chaos 12, 995–1005 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 177–208. Springer, Heidelberg (2001)

    Google Scholar 

  13. Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X.: Directing orbits of chaotic systems by particle swarm optimization. Chaos, Solitons & Fractals 29, 454–461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lopez Cruz, I.L., Van Willigenburg, L.G., Van Straten, G.: Efficient Differential Evolution algorithms for multimodal optimal control problems. Applied Soft Computing 3, 97–122 (2003)

    Article  Google Scholar 

  15. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1983)

    Google Scholar 

  16. Michalewicz, Z., Janikow, C.Z., Krawczyk, J.B.: A modified genetic algorithm for optimal control problems. Computers and Mathematics with Applications 23, 83–94 (1992)

    Article  MATH  Google Scholar 

  17. Paskota, M., Mees, A.I., Teo, K.L.: Geometry of targeting of chaotic systems. Int. J. Bifurcation and Chaos 5, 1167–1173 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Richter, H.: Coupled map lattices as spatio–temporal fitness functions: Landscape measures and evolutionary optimization. Physica D237, 167–186 (2008)

    Google Scholar 

  19. Richter, H.: Evolutionary Optimization and Dynamic Fitness Landscapes: From Reaction–Diffusion Systems to Chaotic CML. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Shinbrot, T., Grebogi, C., Ott, E., Yorke, J.A.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65, 3215–3218 (1990)

    Article  Google Scholar 

  21. Shinbrot, T., Grebogi, C., Ott, E., Yorke, J.A.: Using small perturbations to control chaos. Nature 363, 411–417 (1993)

    Article  Google Scholar 

  22. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolut. Comput. 10, 1–34 (2002)

    Article  Google Scholar 

  23. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comm. Theor. Biol. 8, 389–431 (2003)

    Article  Google Scholar 

  24. Weinberger, E.D., Stadler, P.F.: Why some fitness landscapes are fractal. J. Theor. Biol. 163, 255–275 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, H. (2012). Analyzing Dynamic Fitness Landscapes of the Targeting Problem of Chaotic Systems. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol 7248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29178-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29178-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29177-7

  • Online ISBN: 978-3-642-29178-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics