Skip to main content

Genetic Algorithms for Scheduling Devices Operation in a Water Distribution System in Response to Contamination Events

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7245))

Abstract

This paper heuristically tackles a challenging scheduling problem arising in the field of hydraulic distribution systems in case of a contamination event, that is, optimizing the scheduling of a set of tasks so that the consumed volume of contaminated water is minimized. Each task consists of manually activating a given device, located on the hydraulic network of the water distribution system. In practice, once contamination has been detected, a given number of response teams move along the network to operate each device on site. The consumed volume of contaminated water depends on the time at which each device is operated, according to complex hydraulic laws, so that the value associated to each schedule must be evaluated by a hydraulic simulation.

We explore the potentials of Genetic Algorithms as a viable tool for tackling this optimization-simulation problem. We compare different encodings and propose ad hoc crossover operators that exploit the combinatorial structure of the feasible region, featuring hybridization with Mixed Integer Linear Programming.

Computational results are provided for a real life hydraulic network of average size, showing the effectiveness of the approach. Indeed, we greatly improve upon common sense inspired solutions which are commonly adopted in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonso, L., Jonoski, A., Solomatine, D.: Multiobjective optimization of operational responses for contaminant flushing in water distribution networks. Journal of Water Resources Planning and Management 136(1), 48–58 (2010)

    Article  Google Scholar 

  2. Alvisi, S., Franchini, M., Gavanelli, M., Nonato, M.: Near-optimal scheduling of device activation in water distribution systems to reduce the impact of a contamination event. Journal of Hydroinformatics (in press) doi:10.2166/hydro.2011.147

    Google Scholar 

  3. Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.): Experimental Methods for the Analysis of Optimization Algorithms. Springer (2010)

    Google Scholar 

  4. Bektas, T.: The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  Google Scholar 

  5. Carter, A.E., Ragsdale, C.T.: A new approach to solving the multiple traveling salesperson problem using genetic algorithms. European Journal of Operational Research 175(1), 246–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Forrest, J., Lougee-Heimer, R.: CBC User Guide. Computational Infrastructure for Operations Research, http://www.coin-or.org/Cbc/cbcuserguide.html

  7. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley (1989)

    Google Scholar 

  8. Guidorzi, M., Franchini, M., Alvisi, S.: A multi-objective approach for detecting and responding to accidental and intentional contamination events in water distribution systems. Urban Water 6(2), 115–135 (2009)

    Article  Google Scholar 

  9. Hollander, M., Wolfe, D.: Nonparametric Statistical Methods, 2nd edn. Wiley (1999)

    Google Scholar 

  10. Murray, R., Hart, W., Phillips, C., Berry, J., Boman, E., Carr, R., Riesen, L.A., Watson, J.P., Haxton, T., Herrmann, J., Janke, R., Gray, G., Taxon, T., Uber, J., Morley, K.: US environmental protection agency uses operations research to reduce contamination risks in drinking water. Interfaces 39(1), 57–68 (2009)

    Article  Google Scholar 

  11. Rossman, L.: EPANET 2 users manual. National Risk Management Research Laboratory, Office of research and development, U.S. Environmental Protection Agency, USA

    Google Scholar 

  12. Toth, P., Vigo, D.: The vehicle routing problem. SIAM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavanelli, M., Nonato, M., Peano, A., Alvisi, S., Franchini, M. (2012). Genetic Algorithms for Scheduling Devices Operation in a Water Distribution System in Response to Contamination Events. In: Hao, JK., Middendorf, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2012. Lecture Notes in Computer Science, vol 7245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29124-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29124-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29123-4

  • Online ISBN: 978-3-642-29124-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics