Skip to main content

Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7245))

Abstract

Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscapes called elementary landscapes. The decomposition of the objective function of a problem into its elementary components can be exploited to compute summary statistics. We present closed-form expressions for the fitness-distance correlation (FDC) based on the elementary landscape decomposition of the problems defined over binary strings in which the objective function has one global optimum. We present some theoretical results that raise some doubts on using FDC as a measure of problem difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel, E., Zissimopoulos, V.: On the landscape ruggedness of the quadratic assignment problem. Theoretical Computer Science 263, 159–172 (2000)

    Article  MathSciNet  Google Scholar 

  2. Barnes, J.W., Dimova, B., Dokov, S.P.: The theory of elementary landscapes. Applied Mathematics Letters 16, 337–343 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bierwirth, C., Mattfeld, D., Watson, J.P.: Landscape Regularity and Random Walks for the Job-Shop Scheduling Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chicano, F., Alba, E.: Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization. Journal of Heuristics (10.1007/s10732-011-9170-6)

    Google Scholar 

  5. Chicano, F., Alba, E.: Exact computation of the expectation curves of the bit-flip mutation using landscapes theory. In: GECCO, pp. 2027–2034 (2011)

    Google Scholar 

  6. Chicano, F., Whitley, L.D., Alba, E.: A methodology to find the elementary landscape decomposition of combinatorial optimization problems. Evolutionary Computation 19(4), 597–637 (2011)

    Article  Google Scholar 

  7. Feinsilver, P., Kocik, J.: Krawtchouk polynomials and krawtchouk matrices. In: Recent Advances in Applied Probability, pp. 115–141. Springer, US (2005)

    Chapter  Google Scholar 

  8. García-Pelayo, R., Stadler, P.: Correlation length, isotropy and meta-stable states. Physica D: Nonlinear Phenomena 107(2-4), 240–254 (1997)

    Article  Google Scholar 

  9. Glover, F., Alidaee, B., Rego, C., Kochenberger, G.: One-pass heuristics for large-scale unconstrained binary quadratic problems. EJOR 137(2), 272–287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: GECCO, pp. 184–192. Morgan Kaufmann (1995)

    Google Scholar 

  11. Kinnear Jr., K.E.: Fitness landscapes and difficulty in genetic programming. In: IEEE CEC, vol. 1, pp. 142–147 (June 1994)

    Google Scholar 

  12. Lu, G., Bahsoon, R., Yao, X.: Applying elementary landscape analysis to search-based software engineering. In: Proceedings of SSBSE (2010)

    Google Scholar 

  13. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Annals of Oper. Research 131, 259–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rana, S., Heckendorn, R.B., Whitley, D.: A tractable walsh analysis of SAT and its implications for genetic algorithms. In: Proceedings of AAAI, pp. 392–397 (1998)

    Google Scholar 

  15. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44(1), 3–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stadler, P.F.: Toward a theory of landscapes. In: López-Peña, R., Capovilla, R., García-Pelayo, R., Waelbroeck, H., Zertruche, F. (eds.) Complex Systems and Binary Networks, pp. 77–163. Springer (1995)

    Google Scholar 

  17. Stadler, P.F.: Fitness Landscapes. In: Biological Evolution and Statistical Physics, pp. 183–204. Springer (2002)

    Google Scholar 

  18. Sutton, A.M., Whitley, D., Howe, A.E.: Mutation rates of the (1+1)-EA on pseudo-boolean functions of bounded epistasis. In: GECCO, pp. 973–980. ACM (2011)

    Google Scholar 

  19. Sutton, A.M., Whitley, L.D., Howe, A.E.: Computing the moments of k-bounded pseudo-boolean functions over hamming spheres of arbitrary radius in polynomial time. Theoretical Computer Science (10.1016/j.tcs.2011.02.006)

    Google Scholar 

  20. Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the exact correlation structure of k-satisfiability landscapes. In: Proceedings of GECCO, pp. 365–372. ACM, New York (2009)

    Chapter  Google Scholar 

  21. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)

    Article  Google Scholar 

  22. Whitley, D., Sutton, A.M., Howe, A.E.: Understanding elementary landscapes. In: Proceedings of GECCO, pp. 585–592. ACM, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chicano, F., Alba, E. (2012). Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum. In: Hao, JK., Middendorf, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2012. Lecture Notes in Computer Science, vol 7245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29124-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29124-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29123-4

  • Online ISBN: 978-3-642-29124-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics