Skip to main content

Measuring Gene Expression Noise in Early Drosophila Embryos: The Highly Dynamic Compartmentalized Micro-environment of the Blastoderm Is One of the Main Sources of Noise

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2012)

Abstract

Fluorescence imaging has become a widely used technique for quantitatively measuring mRNA or protein expression. The first measurements were on gene expression noise in bacteria and yeast. The relative biological and physicochemical simplicity of these single cells encouraged a number of groups to try similar approaches in multicellular organisms. Such work has been primarily on whole Drosophila embryos, where the genes forming the body plan are very well understood. The numerous sources of noise in complex embryonic tissues are a major challenge for characterizing gene expression noise. Here, we present our approach for first separating experimental from biological noise, followed by distinguishing sources of biological noise. We decompose raw signal into trend and residual noise using Singular Spectrum Analysis. We demonstrate our statistical techniques on the Drosophila Hunchback protein pattern. We show that the ‘texture noise’, arising from the pre-cellular compartmentalization of the embryo surface, which is highly dynamic in time, is a major component of total biological noise, and can exceed gene transcription/translation noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  2. Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., van Oudenaarden, A.: Regulation of noise in the expression of a single gene. Nature Genetics 31(1), 69 (2002)

    Article  Google Scholar 

  3. Raser, J.M., O’Shea, E.K.: Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)

    Article  Google Scholar 

  4. Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., Barkai, N.: Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006)

    Article  Google Scholar 

  5. Longo, D., Hasty, J.: Dynamics of single-cell gene expression. Mol. Syst. Biol. 2, 64 (2006)

    Article  Google Scholar 

  6. Newman, J.R., Ghaemmaghami, S., Ihmels, J., Breslow, D.K., Noble, M., Derisi, J.L., Weissman, J.S.: Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006)

    Article  Google Scholar 

  7. Fedoroff, N., Fontana, W.: Small Numbers of Big Molecules. Science, New Series 297(5584), 1129–1131 (2002)

    Google Scholar 

  8. Wu, Y., Myasnikova, E., Reinitz, J.: Master equation simulation analysis of immunostained Bicoid morphogen gradient. BMC Syst. Biol. 1, 52 (2007)

    Article  Google Scholar 

  9. Tkacik, G., Gregor, T., Bialek, W.: The Role of Input Noise in Transcriptional Regulation. PLoS ONE 3(7), e2774 (2008)

    Article  Google Scholar 

  10. He, F., Wen, Y., Deng, J., Lin, X., Lu, L.J., Jiao, R., Ma, J.: Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev. Cell 15(4), 558–567 (2008)

    Article  Google Scholar 

  11. He, F., Saunders, T.E., Wen, Y., Cheung, D., Jiao, R., ten Wolde, P.R., Howard, M., Ma, J.: Shaping a morphogen gradient for positional precision. Biophys. J. 99(3), 697–707 (2010)

    Article  Google Scholar 

  12. Zamparo, L., Perkins, T.J.: Statistical lower bounds on protein copy number from fluorescence expression images. Bioinformatics 25, 2670–2676 (2009)

    Article  Google Scholar 

  13. Myasnikova, E., Surkova, S., Panok, L., Samsonova, M., Reinitz, J.: Estimation of errors introduced by confocal imaging into the data on segmentation gene expression in Drosophila. Bioinformatics 25, 346–352 (2009)

    Article  Google Scholar 

  14. Myasnikova, E., Surkova, S., Stein, G., Pisarev, A., Samsonova, M.: A regression system for estimation of errors introduced by confocal imaging into gene expression data in situ. BMC Bioinformatics 12, 320 (2011)

    Article  Google Scholar 

  15. Holloway, D.M., Lopes, F.J.P., da Fontoura Costa, L., Travençolo, B.A.N., Golyandina, N., Usevich, K., Spirov, A.V.: Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation. PLoS Comput. Biol. 7(2), e1001069 (2011)

    Article  MathSciNet  Google Scholar 

  16. Lucchetta, E.M., Vincent, M.E., Ismagilov, R.F.: A Precise Bicoid Gradient Is Nonessential during Cycles 11–13 for Precise Patterning in the Drosophila Blastoderm. PLoS ONE 3(11), e3651 (2008)

    Article  Google Scholar 

  17. Lécuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T., Hughes, T.R., Tomancak, P., Krause, H.M.: Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007)

    Article  Google Scholar 

  18. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  19. Alexandrov, T., Golyandina, N., Spirov, A.V.: Singular spectrum analysis of gene expression profiles of early Drosophila embryo: exponential-in-distance patterns. Res. Lett. Signal Processing 2008, 825758 (2008)

    Google Scholar 

  20. Lebrecht, D., Foehr, M., Smith, E., Lopes, F.J.P., Vanario-Alonso, C.E., et al.: Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. Proc. Natl. Acad. Sci. USA 102, 13176–13181 (2005)

    Article  Google Scholar 

  21. Holloway, D.M., Harrison, L.G., Kosman, D., Vanario-Alonso, C.E., Spirov, A.V.: Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products. Dev. Dyn. 235, 2949–2960 (2006)

    Article  Google Scholar 

  22. Lopes, F.J.P., Vieira, F.M.C., Holloway, D.M., Bisch, P.M., Spirov, A.V.: Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo. PLoS Comput. Biol. 4(9), e1000184 (2008)

    Article  MathSciNet  Google Scholar 

  23. Pisarev, A., Poustelnikova, E., Samsonova, M., Reinitz, J.: FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution. Nucl. Acids Res. 37, D560–D566 (2009)

    Article  Google Scholar 

  24. Surkova, S., Kosman, D., Kozlov, K., Manu Myasnikova, E., Samsonova, A.A., Spirov, A.: Characterization of the Drosophila segment determination morphome. Dev. Biol. 313(2), 844–862 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spirov, A.V., Golyandina, N.E., Holloway, D.M., Alexandrov, T., Spirova, E.N., Lopes, F.J.P. (2012). Measuring Gene Expression Noise in Early Drosophila Embryos: The Highly Dynamic Compartmentalized Micro-environment of the Blastoderm Is One of the Main Sources of Noise. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics