Skip to main content

Explicit NMPC Based on Neural Network Models

  • Chapter
Explicit Nonlinear Model Predictive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 429))

Abstract

This chapter considers an approximate mp-NLP approach to explicit solution of deterministic NMPC problems for constrained nonlinear systems described by neural network NARX models. The approach builds an orthogonal search tree structure of the regressor space partition and consists in constructing a piecewise linear (PWL) approximation to the optimal control sequence. A dual-mode control strategy is proposed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. It consists in using the explicit NMPC (based on NARX model) when the output variable is far from the origin and applying an LQR in a neighborhood of the origin. The LQR design is based on an augmented linear ARX model which takes into account the integral regulation error. The approximate mp-NLP approach and the dual-mode approach are applied to design an explicit output-feedback NMPC for regulation of a pH maintaining system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34, 1205–1217 (1998)

    Article  MATH  Google Scholar 

  2. Chen, S., Billings, S.A., Grant, P.M.: Non-linear system identification using neural networks. International Journal of Control 51, 1191–1214 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Academic Press, Orlando (1983)

    MATH  Google Scholar 

  4. Grancharova, A., Johansen, T.A.: Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control. Automatica 45, 1134–1143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grancharova, A., Kocijan, J., Johansen, T.A.: Dual-mode explicit output-feedback predictive control based on neural network models. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2010), Bologna, Italy, pp. 545–550 (2010), http://www.IFAC-PapersOnLine.net

  6. Grancharova, A., Kocijan, J., Johansen, T.A.: Explicit output-feedback nonlinear predictive control based on black-box models. Engineering Applications of Artificial Intelligence 24, 388–397 (2011)

    Article  Google Scholar 

  7. Han, J., Moraga, C., Sinne, S.: Optimization of feedforward neural networks. Engineering Applications of Artificial Intelligence 9, 109–119 (1996)

    Article  Google Scholar 

  8. He, X., Asada, H.: A new method for identifying orders of input-output models for nonlinear dynamic systems. In: Proceedings of the American Control Conference, San Francisco, CA, pp. 2520–2523 (1993)

    Google Scholar 

  9. Henson, M.A., Seborg, D.E.: Adaptive nonlinear control of a pH neutralization process. IEEE Transactions on Control System Technology 2, 169–183 (1994)

    Article  Google Scholar 

  10. Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40, 293–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kocijan, J., Murray-Smith, R.: Nonlinear Predictive Control with a Gaussian Process Model. In: Murray-Smith, R., Shorten, R. (eds.) Switching and Learning in Feedback Systems. LNCS, vol. 3355, pp. 185–200. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Lepetič, M., Škrjanc, I., Chiacchiarini, H.G., Matko, D.: Predictive functional control based on fuzzy model: Magnetic suspension system case study. Engineering Applications of Artificial Intelligence 16, 425–430 (2003)

    Article  Google Scholar 

  13. Ljung, L., Glad, T.: Modeling of Dynamic Systems. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  14. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control 38, 1623–1633 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)

    Book  Google Scholar 

  17. Ogata, K.: Discrete-time Control Systems. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  18. Peng, H., Yang, Z.J., Gui, W., Wu, M., Shioya, H., Nakano, K.: Nonlinear system modelling and robust predictive control based on RBF-ARX model. Engineering Applications of Artificial Intelligence 20, 1–9 (2007)

    Article  Google Scholar 

  19. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive systems. John Wiley & Sons, New York (2000)

    Google Scholar 

  20. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.Y., Hjalmarsson, H., Juditsky, A.: Non-linear black-box modeling in system identification: A unified overview. Automatica 31, 1691–1724 (1995)

    Article  MATH  Google Scholar 

  21. Venkatasubramanian, V., McAvoy, T.J. (eds.): Neural network applications in chemical engineering. Special Issue of Computers & Chemical Engineering 16(4) (1992)

    Google Scholar 

  22. Zeng, G.M., Qin, X.S., He, L., Huang, G.H., Liu, H.L., Lin, Y.P.: A neural network predictive control system for paper mill wastewater treatment. Engineering Applications of Artificial Intelligence 16, 121–129 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Grancharova .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Grancharova, A., Johansen, T.A. (2012). Explicit NMPC Based on Neural Network Models. In: Explicit Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28780-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28780-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28779-4

  • Online ISBN: 978-3-642-28780-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics