Skip to main content

Optical Force and Torque on Single and Aggregated Spheres: The Trapping Issue

  • Chapter
  • First Online:
The Mie Theory

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 169))

Abstract

Radiation force and radiation torque stem from the conservation theorems governing the interaction between radiation and particles. As a result, even simple plane waves may yield force and torque that are nonnegligible when studying the dynamics of particles. We show how these forces and torques can be put into formulas of practical use starting with the expansion of the electromagnetic field in a series of vector multipole fields, and adapt the formalism for particles that are fairly well modeled as single or aggregated spheres. Then, we extend the formalism to deal with the case the field is a highly focalized laser beam, that, as is well known, may trap particles within the focal region. Finally, we present our calculations performed by the theory we exposed, finding a convincing concordance as long as comparison can be made with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.Y. Chiao, N.C. Wickramasinghe, Mon. Not. R. Astr. Soc. 159, 361 (1972)

    ADS  Google Scholar 

  2. J. Cho, A. Lazarian, Astrophys. J. 631, 361 (2005)

    Article  ADS  Google Scholar 

  3. P.C. Waterman, Phys. Rev. D 3, 825 (1971)

    Article  ADS  Google Scholar 

  4. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  MATH  Google Scholar 

  5. J.D. Jackson, Classical electrodynamics, 2nd edn. (Wiley, New York, 1975)

    MATH  Google Scholar 

  6. R.N.C. Pfeifer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 (2007)

    Article  ADS  Google Scholar 

  7. D.S. Saxon, Phys. Rev. 100, 1771 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M.I. Mishchenko, J. Quant. Spectrosc. Radiat. Transfer 70, 811 (2001)

    Article  ADS  Google Scholar 

  9. R. Saija, M.A. Iatì, A. Giusto, P. Denti, F. Borghese, J. Quant. Spectrosc. Radiat. Transf. 94, 163 (2005)

    Article  ADS  Google Scholar 

  10. F. Borghese, P. Denti, R. Saija, Scattering from model nonspherical particles, 2nd edn. (Springer, Heidelberg, 2007)

    Google Scholar 

  11. E. Fucile, F. Borghese, P. Denti, R. Saija, O.I. Sindoni, IEEE Trans. Antennas Propag. AP 45, 868 (1997)

    Article  ADS  Google Scholar 

  12. F. Borghese, P. Denti, R. Saija, M.A. Iatì, Opt. Express 15, 11984 (2007)

    Article  ADS  Google Scholar 

  13. F. Borghese, P. Denti, R. Saija, M.A. Iatì, Opt. Express 15, 14618 (2007)

    Article  ADS  Google Scholar 

  14. M.E. Rose, Elementary theory of angular momentum (Wiley, New York, 1957)

    MATH  Google Scholar 

  15. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover Publications, New York, 1972)

    MATH  Google Scholar 

  16. P.L. Marston, J.H. Crichton, Phys. Rev. A 30, 2508 (1984)

    Article  ADS  Google Scholar 

  17. L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, New York, 2007)

    Google Scholar 

  18. F. Borghese, P. Denti, R. Saija, M.A. Iatì, Opt. Express 14, 9508 (2006)

    Article  ADS  Google Scholar 

  19. F. Borghese, P. Denti, R. Saija, M.A. Iatì, Opt. Express 15, 6946 (2007)

    Article  ADS  Google Scholar 

  20. G. Wurm, M. Schnaiter, Astrophys. J. 567, 370 (2002)

    Article  ADS  Google Scholar 

  21. J. Klačka, M. Kocifai, J. Quant. Spectrosc. Radiat. Transf. 70, 595 (2001)

    Article  ADS  Google Scholar 

  22. E.M. Purcell, Astrophys. J. 231, 404 (1979)

    Article  ADS  Google Scholar 

  23. B.T. Draine, J.C. Weingartner, Astrophys. J. 470, 551 (1996)

    Article  ADS  Google Scholar 

  24. R. Saija, M.A. Iatì, A. Giusto, F. Borghese, P. Denti, S. Aiello, C. Cecchi-Pestellini, Mon. Not. R. Astr. Soc. 341, 1239 (2003)

    Article  ADS  Google Scholar 

  25. X. Ma, J.Q. Lu, R.S. Brock, K.M. Jacobs, P. Yang, X.H. Hu, Phys. Med. Biol. 48, 4165 (2003)

    Article  Google Scholar 

  26. M.J. Greenberg, F. Ferrini, B. Barsella, S. Aiello, Nature 327, 214 (1987)

    Article  ADS  Google Scholar 

  27. B.T. Draine, H.M. Lee, Astrophys. J. 285, 89 (1984)

    Article  ADS  Google Scholar 

  28. F. Borghese, P. Denti, R. Saija, M.A. Iatì, Opt. Express 15(14), 8960 (2007)

    Article  ADS  Google Scholar 

  29. L. Mandel, E. Wolf, Optical coherence and quantum optics (Cambridge University Press, New York, 1995)

    Google Scholar 

  30. B. Richards, E. Wolf, Proc. Roy. Soc. (London) 253, 358 (1959)

    Article  ADS  MATH  Google Scholar 

  31. A. Rohrbach, E.H.K. Stelzer, Appl. Opt. 41, 2494 (2005)

    Article  ADS  Google Scholar 

  32. A. Rohrbach, Phys. Rev. Letters 95, 168102 (2005)

    Article  ADS  Google Scholar 

  33. A.R. Zakharian, P. Polynkin, M. Mansuripur, J.V. Moloney, Opt. Express 14(8), 3660 (2005)

    Article  ADS  Google Scholar 

  34. R. Saija, M.A. Iatì, P. Denti, F. Borghese, A. Giusto, O.I. Sindoni, Appl. Opt. 42, 2785 (2003)

    Article  ADS  Google Scholar 

  35. P.B. Johnson, R.W. Christy, Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  36. P.M. Hansen, V.K. Bhatia, N. Harrit, L. Oddershede, Nano Letters 5, 1937 (2005)

    Article  ADS  Google Scholar 

  37. S.N.S. Reihani, L.B. Oddershede, Opt. Lett. 32, 1998 (2007)

    Article  ADS  Google Scholar 

  38. L.M. Liz-Marzán, P. Mulvaney, New J. Chem. 22, 1285 (1998)

    Article  Google Scholar 

  39. R.H. Doremus, J. Chem. Phys. 40, 2389 (1964)

    Article  ADS  Google Scholar 

  40. R.H. Doremus, J. Chem. Phys. 41, 3259 (1964)

    Article  ADS  Google Scholar 

  41. U. Kreibig, J. Phys. (Paris) C2, 97 (1977)

    Google Scholar 

  42. Y. Seol, A.E. Carpenter, T. Perkins, Opt. Lett. 31, 2429 (2006)

    Article  ADS  Google Scholar 

  43. E.J.G. Peterman, F. Gittes, C.F. Schmidt, Biophys. J. 1984, 1308 (2003)

    Article  Google Scholar 

  44. D. Lapotko, Opt. Express 17, 2538 (2009)

    Article  ADS  Google Scholar 

  45. F. Borghese, P. Denti, R. Saija, G. Toscano, O.I. Sindoni, J. Opt. Soc. Am. A 4, 1984 (1987)

    Article  ADS  Google Scholar 

  46. Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P. Yang, Nature 447, 1098 (2007)

    Article  ADS  Google Scholar 

  47. P.J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, J. Liphardt, Nature Materials 5, 97 (2006)

    Article  ADS  Google Scholar 

  48. R. Saija, M.A. Iatì, P. Denti, F. Borghese, O. Sindoni, Appl. Opt. 40, 5337 (2001)

    Article  ADS  Google Scholar 

  49. R. Saija, M.A. Iatì, F. Borghese, P. Denti, S. Aiello, C. Cecchi-Pestellini, Astrophys. J. 559, 993 (2001)

    Article  ADS  Google Scholar 

  50. F. Borghese, P. Denti, R. Saija, M.A. Iatì, O.I. Sindoni, J. Quant. Spectrosc. Radiat. Transf. 70, 237 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalba Saija .

Editor information

Editors and Affiliations

Appendices

Appendix 1

As anticipated in Sect. 6.2, with the help of the asymptotic multipole expansions it is easily proved that the dyadic terms

$$\begin{aligned} {\hat{\mathbf{r}}^{\prime }}\cdot \left[n^2(\mathbf{E}^{\prime }\otimes \mathbf{E}^{\prime \ast })+(\mathbf{ B}^{\prime }\otimes \mathbf{B}^{\prime \ast })\right]=n^2\bigl ({\hat{\mathbf{r}}^{\prime }}\cdot \mathbf{ E}^{\prime }\bigr )\mathbf{E}^{\prime }+\bigl ({\hat{\mathbf{r}}^{\prime }}\cdot \mathbf{B}^{\prime }\bigr )\mathbf{B}^{\prime } \end{aligned}$$

give a vanishing contribution at the radiation force. In fact, a look to (6.8a) and (6.8b) shows that the asymptotic multipole expansions of \(\mathbf{E}^{\prime }_\mathrm{ I}\) and \(\mathbf{E}^{\prime }_\mathrm{ S}\) contain the transverse harmonics \(\mathbf{Z}^{(p)}_{lm}({\hat{\mathbf{r}}^{\prime }})\) which, according to their definition are orthogonal, in the ordinary vector sense, to \({\hat{\mathbf{r}}^{\prime }}\). This decrees the vanishing of the contribution of the dyadic terms for whatever form of the incident amplitudes \(W^{(p)}_{\mathrm{ I}lm}\), even when the latter are substituted by the \(\fancyscript{W}^{(p)}_{lm}(\mathbf{R}_{O^{\prime }})\).

Now, we show how it happens that the terms \(\mathbf{E}^{\prime }_\mathrm{ I}\cdot \mathbf{E}^{\prime \ast }_\mathrm{ I}\) and \(\mathbf{B}^{\prime }_\mathrm{ I}\cdot \mathbf{ B}^{\prime \ast }_\mathrm{ I}\) give a vanishing contribution to the radiation force even when the incident field is not a single plane wave but rather a superposition of plane waves with the same magnitude of \(k\) but different direction of propagation, i.e., different \({\hat{\mathbf{k}}}\).

Let us thus assume that the incident electric field is a superposition of plane waves of the kind of (6.28). Thus a typical term that would enter (6.1) is

$$\begin{aligned} I_{E}=\mathrm{ Re}\left[r^{\prime 2}n^2\int \limits _{\Omega ^{\prime }}\mathbf{E}^{\prime }_\mathrm{ I}({\hat{\mathbf{k}}})\cdot \mathbf{E}^{\prime \ast }_\mathrm{ I}\left({\hat{\mathbf{k}^{\prime }}}\right){\hat{\mathbf{r}}^{\prime }}\,\mathrm{ d}\Omega ^{\prime }\right], \end{aligned}$$

Where \(\mathbf{E}^{\prime }_\mathrm{ I}\left({\hat{\mathbf{k}}}\right)=E^{\prime }_\mathrm{ PW}\left({\hat{\mathbf{k}}}\right){\hat{\mathbf{u}}}_{{\hat{\mathbf{k}}}}\exp (I\mathbf{k}\cdot \mathbf{r}^{\prime })=\mathbf{ E}^{\prime }_\mathrm{ PW}\left({\hat{\mathbf{k}}}\right)\exp (I\mathbf{k}\cdot \mathbf{r}^{\prime })\). An analogous term \(I_{B}\) comes from \(\mathbf{B}^{\prime}_\mathrm{ I}\). Since \(r^{\prime }\) is large, we can use the asymptotic form of a plane wave [7, 8] so that \(I_{E}\) becomes

$$\begin{aligned} I_{E}=\mathrm{ Re}\Bigl \{ \frac{4\pi n^2}{k^2}&\int \limits _{\Omega ^{\prime }}\mathbf{E}^{\prime }_\mathrm{ PW}\left({\hat{\mathbf{k}}}\right)\cdot \mathbf{E}^{\prime \ast }_\mathrm{ PW}\left({\hat{\mathbf{k}^{\prime }}}\right)\\&\times \left[\delta \left({\hat{\mathbf{k}}}+{\hat{\mathbf{r}}^{\prime }}\right)\exp (-ikr^{\prime })-\delta \left({\hat{\mathbf{k}}}-{\hat{\mathbf{r}}^{\prime }}\right)\exp (ikr^{\prime })\right] \\&\times \left[\delta \left({\hat{\mathbf{k}^{\prime }}}+{\hat{\mathbf{r}}^{\prime }}\right)\exp (ikr^{\prime })-\delta \left({\hat{\mathbf{k}^{\prime }}}-{\hat{\mathbf{r}}^{\prime }}\right)\exp (-ikr^{\prime })\right]{\hat{\mathbf{r}}^{\prime }}\,\mathrm{ d}\Omega ^{\prime }\Bigr \}\;. \end{aligned}$$

Due to the properties of the \(\delta \)-function, the result of the integration is

$$\begin{aligned} I_{E}=\mathrm{ Re}\Bigl \{ \frac{4\pi n^2}{k^2}&\mathbf{E}^{\prime }_\mathrm{ PW}({\hat{\mathbf{k}}})\cdot \mathbf{E}^{\prime \ast }_\mathrm{ PW}\left({\hat{\mathbf{k}^{\prime }}}\right)\left[-{\hat{\mathbf{k}}}\delta \left({\hat{\mathbf{k}}}-{\hat{\mathbf{k}^{\prime }}}\right)+{\hat{\mathbf{k}^{\prime }}}\delta \left({\hat{\mathbf{k}}}-{\hat{\mathbf{k}^{\prime }}}\right)\right.\\ +&\left.{\hat{\mathbf{k}^{\prime }}}\delta \left({\hat{\mathbf{k}}}+{\hat{\mathbf{k}^{\prime }}}\right)\exp (2ikr^{\prime })-{\hat{\mathbf{k}^{\prime }}}\delta \left({\hat{\mathbf{k}}}+{\hat{\mathbf{k}^{\prime }}}\right)\exp (-2ikr^{\prime })\right]\Bigr \}\;. \end{aligned}$$

A quite similar expression, except for the absence of \(n\), is obtained for \(I_{B}\), so that collecting all the terms we get

$$\begin{aligned} I&= I_{E}+I_{B}\\&= \mathrm{ Re}\Bigl \{ \frac{4\pi }{k^2}\left[n^2\mathbf{E}^{\prime }_\mathrm{ PW}\left({\hat{\mathbf{k}}}\right)\cdot \mathbf{E}^{\prime \ast }_\mathrm{ PW}\left({\hat{\mathbf{k}^{\prime }}}\right)+\mathbf{B}^{\prime }_\mathrm{ PW}\left({\hat{\mathbf{k}}}\right)\cdot \mathbf{B}^{\prime \ast }_\mathrm{ PW}\left({\hat{\mathbf{k}^{\prime }}}\right)\right]\\&\qquad \qquad \times {\hat{\mathbf{k}^{\prime }}}\delta \left({\hat{\mathbf{k}}}+{\hat{\mathbf{k}^{\prime }}}\right)\bigl [\exp (2ikr^{\prime })-\exp (-2ikr^{\prime })\bigr ]\Bigr \} \end{aligned}$$

which is easily seen to vanish, even when \({\hat{\mathbf{k}^{\prime }}}=-{\hat{\mathbf{k}}}\), on account that

$$\begin{aligned} \mathbf{B}^{\prime }_\mathrm{ PW}({\hat{\mathbf{k}}})=-in\,{\hat{\mathbf{k}}}\times \mathbf{E}^{\prime }_\mathrm{ PW}\left({\hat{\mathbf{k}}}\right)\;. \end{aligned}$$

Similar conclusions can be reached, starting from (6.31), for the case of an aberrated laser beam.

Finally we note that, on account of the definition of the amplitudes \(\fancyscript{W}^{(p)}_{lm}(\mathbf{R}_{O^{\prime }})\) and of the related amplitudes \(\fancyscript{A}^{(p)}_{lm}\), in analogy to Sect. 6.2.2, the radiation torque \(\varvec{\Gamma }_\mathrm{ Rad}\) does not get contributions from terms of the form \(\fancyscript{W}^{(p)}_{lm}(\mathbf{R}_{O^{\prime }})\fancyscript{W}^{(p^{\prime })\ast }_{l^{\prime }m^{\prime }}(\mathbf{R}_{O^{\prime }})\).

In conclusion, neither a plane wave field nor a focal field gives direct contributions to the radiation force or torque, as they are just the fields in the absence of particles.

Appendix 2

In Sect.6.1 we stated that the calculation of \(\mathbf{F}_\mathrm{ Rad}\) and \(\varvec{\Gamma }_\mathrm{ Rad}\) requires the knowledge of the field scattered by the particles. We solve the scattering problem for the particles concerned by expanding both the incident and the scattered field in a series of vector multipole fields (see (6.6) and (6.7)). Then, according to Waterman [3] we relate the multipole amplitudes, the incident field \(W_{\mathrm{ I}lm}^{(p)}\), to those of the scattered field \(A^{(p)}_{lm}\), by the equation [10]

$$\begin{aligned} A^{(p)}_{lm}\left({\hat{\mathbf{u}}}_\mathrm{ I},{\hat{\mathbf{k}}}_\mathrm{ I}\right)=\sum _{p^{\prime }l^{\prime }m^{\prime }}\fancyscript{S}^{(pp^{\prime })}_{lml^{\prime }m^{\prime }}W^{(p^{\prime })}_{\mathrm{ I}\,l^{\prime }m^{\prime }}\left({\hat{\mathbf{u}}}_\mathrm{ I},{\hat{\mathbf{k}}}_\mathrm{ I}\right), \end{aligned}$$
(6.38)

that defines the elements of the transition matrix of the particle. Let us stress that, in principle, the sums in (6.6) and (6.7) and thus also (6.38) include an infinite number of terms. In practice, for computational reasons, these sums must be truncated to some suitable \(l_\mathrm{ M}\) chosen so as to ensure a fair description of the fields. Therefore, all sums over the multipole order \(l\) should be understood to extend up to \(l=l_\mathrm{ M}\). Since the particles we deal with either are, or can be modeled as aggregates of spheres, we calculate \(\fancyscript{S}^{(pp^{\prime })}_{lml^{\prime }m^{\prime }}\) for such aggregates by inverting the matrix of the linear system that is obtained by imposing to the fields the boundary conditions across each of the spherical surfaces [10, 49]. The order of the matrix to be inverted is \(2Nl_\mathrm{ M}(l_\mathrm{ M}+2)\), where \(N\) is the number of the spheres of the aggregate. The convergence of such kinds of calculations, i.e., the choice of the appropriate \(l_\mathrm{ M}\) is studied in Refs. [34]. A comprehensive treatment of all the topics mentioned above related to the calculation of the transition matrix can be found in Ref. [10]. It may be useful to note that for a homogeneous sphere

$$\begin{aligned} \fancyscript{S}^{(pp^{\prime })}_{lml^{\prime }m^{\prime }}=\fancyscript{S}^{(p)}_{l}\delta _{pp^{\prime }}\delta _{ll^{\prime }}\delta _{mm^{\prime }}, \end{aligned}$$

and \(\fancyscript{S}^{(1)}_l=b_l\), \(\fancyscript{S}^{(2)}_l=a_l\), \(a_l\) and \(b_l\) being the well-known Mie coefficients [4, 10]. The transition matrix is related to the scattering amplitude of the particle \(\mathbf{F}({\hat{\mathbf{k}}}_\mathrm{ S},{\hat{\mathbf{k}}}_\mathrm{ I};{\hat{\mathbf{u}}}_\mathrm{ I})\) through the equation

$$\begin{aligned} \mathbf{F}\left({\hat{\mathbf{k}}}_\mathrm{ S},{\hat{\mathbf{k}}}_\mathrm{ I};{\hat{\mathbf{u}}}_\mathrm{ I}\right)=\frac{1}{k}\sum _{plm}(-I)^{l+p}\mathbf{Z}^{(p)}_{lm}\left({\hat{\mathbf{k}}}_\mathrm{ S}\right)A^{(p)}_{lm}\left({\hat{\mathbf{u}}}_\mathrm{ I},{\hat{\mathbf{k}}}_\mathrm{ I}\right) \end{aligned}$$
(6.39)

where the amplitudes of the scattered field are given by (6.38). Equation (6.39) thus allows to express the scattering cross section and the extinction cross section in terms of the elements of the transition matrix.

The usefulness of the transition matrix stems from the its transformation properties under rotation of the coordinate frame. In fact, if the frame \(\Sigma ^{\prime }\) attached to the particle rotates to an orientation characterized by the Eulerian angles \(\alpha \), \(\beta \), and \(\gamma \), \(\Theta \) for short, the elements of the transition matrix become

$$\begin{aligned} \fancyscript{S}^{(pp^{\prime })}_{lml^{\prime }m^{\prime }}=\sum _{\mu \mu ^{\prime }}D^{(l)\ast }_{m\mu }(\Theta )\bar{\fancyscript{S}}^{(pp^{\prime })}_{lml^{\prime }m^{\prime }}D^{(l^{\prime })}_{m^{\prime }\mu ^{\prime }}(\Theta ) \end{aligned}$$
(6.40)

where \(\bar{\fancyscript{S}}^{(pp^{\prime })}_{lml^{\prime }m^{\prime }}\) denotes the elements of the transition matrix calculated in the frame \(\Sigma ^{\prime }\) so that they are independent of the orientation of the particle. As a result, the elements of the transition matrix depend on the orientation through the rotation matrices \(D^{(l)}\) only. Then, the averages over the orientation of the particles for all the physically significant quantities result in integrals of products of up to four elements of rotation matrices further multiplied by \(P(\Theta )\), the latter being the appropriate function that describes the distribution of orientations. There are relevant cases, e.g., the case of random orientations (random average), or the case of random orientation around a fixed axis (axial average), in which the integration above can be performed analytically. These averaging procedures, although straightforward, yield rather complex formulas so that we refer the interested reader to the details that are fully expounded elsewhere [9, 10, 50].

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saija, R., Denti, P., Borghese, F. (2012). Optical Force and Torque on Single and Aggregated Spheres: The Trapping Issue. In: Hergert, W., Wriedt, T. (eds) The Mie Theory. Springer Series in Optical Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28738-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28738-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28737-4

  • Online ISBN: 978-3-642-28738-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics